DETECTING SERVICE PROVIDER ALLIANCES ON THE CHOREOGRAPHY ENACTMENT PRICING GAME

Johanne Cohen Daniel Cordeiro Loubna Echabbi March 30, 2016

CNRS – Université Paris Sud, France Universidade de São Paulo, Brazil STRS Lab., INPT, Morocco

Different services may need different providers to be executed

- An application is composed of several services
- The enactment of a service composition is the assignment of services to providers according to a given criteria (e.g., price)
- It is easy for an organization to delegate the execution to any provider:
 - no reason for a vendor not to subcontract resources from other vendors
 - the choreography model enforces interoperability and loose coupling
- Collaborative platform composed of resources from different organizations

COST OF COLLABORATION

- Suppose users pay a price proportional to the energy spent to execute its jobs
- Dynamic voltage and frequency scaling (DVFS)
- Energy = $\int_t P(s(t)) dt$, with $P(s(t)) = s(t)^{\alpha}$, $\alpha > 1$

cost without cooperation = $19^{\alpha} + 7^{\alpha} + 1^{\alpha} + 1^{\alpha}$

COST OF COLLABORATION

- Suppose users pay a price proportional to the energy spent to execute its jobs
- Dynamic voltage and frequency scaling (DVFS)
- Energy = $\int_t P(s(t)) dt$, with $P(s(t)) = s(t)^{\alpha}$, $\alpha > 1$

$$O^{(1)}$$
 $O^{(2)}$ $O^{(3)}$ $O^{(4)}$
7 7 6 6
1 6
1 $C^{(4)}$
 $Cost^{(1)} = 7^{\alpha};$ $Cost^{(2)} = 7^{\alpha};$ $Cost^{(3)} = Cost^{(4)} = 7^{\alpha}$

 $\begin{array}{l} \mbox{cost with cooperation} = 4(7^{\alpha}) \\ \mbox{Profit of coalition: } (19^{\alpha}+7^{\alpha}+2) - 4(7^{\alpha}) > 0 \end{array}$

Costs for $O^{(3)}$ and $O^{(4)}$ increased from 1^{α} to 7^{α}

Members should distribute the profit and offer some compensation for them to participate.

v = cost without cooperation - cost with cooperation

 $V(\{1, 2, 3, 4\}) = (19^{\alpha} + 7^{\alpha} + 2) - 4 \cdot 7^{\alpha}$

Costs for $O^{(3)}$ and $O^{(4)}$ increased from 1^{α} to 7^{α}

Members should distribute the profit and offer some compensation for them to participate.

v = cost without cooperation - cost with cooperation

$$v(\{1,2,3,4\}) = (19^{\alpha} + 7^{\alpha} + 2) - 4 \cdot 7^{\alpha}$$

Let $C_{SH}^{(k)}$ be the global cost of the cooperative schedule SH for organization $O^{(k)}$. The cooperative problem can then be stated as follows:

Find (x_1, \ldots, x_N) such that $C_{SH}^{(k)} - x_k \le p(\{k\})$ and $\sum_i x_i \le v([N])$ $\forall k(1 \le k \le N)$, if such vector exists.

The vector *x* represents the payment for each organization to have incentive to collaborate.

- The choreography enactment game models the cooperative game played by organizations
- Their main objective is to form alliances in order to schedule all jobs belonging to them at the lowest cost
- The alliance must be *stable*, i.e., no player or subset of players have incentive to leave the alliance

Cooperative game

- pair ([N], v) where $[N] = \{1, ..., N\}$ is a finite set of players
- $v : 2^{|N|} \to \mathbb{R}$ is the *characteristic function*, a mapping a alliance $C \subseteq [N]$ to its payment v(C)
- $\cdot v(\mathcal{C})$ is the value that \mathcal{C} could obtain if they choose to cooperate

$$v(\{1,2,3,4\}) = (19^{\alpha} + 7^{\alpha} + 2) - 4 \cdot 7^{\alpha} \quad v(\{2,3,4\}) = (7^{\alpha} + 2) - 3 \cdot 3^{\alpha}$$
$$v(\{1,3,4\}) = (19^{\alpha} + 2) - 3 \cdot 7^{\alpha} \qquad v(\{3,4\}) = 0$$
$$v(\{2,4\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha} \qquad v(\{2,3\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha}$$

Cooperative game

- pair ([N], v) where $[N] = \{1, ..., N\}$ is a finite set of players
- $v : 2^{|N|} \to \mathbb{R}$ is the *characteristic function*, a mapping a alliance $C \subseteq [N]$ to its payment v(C)
- $\cdot \ \textit{v}(\mathcal{C})$ is the value that \mathcal{C} could obtain if they choose to cooperate

$$v(\{1,2,3,4\}) = (19^{\alpha} + 7^{\alpha} + 2) - 4 \cdot 7^{\alpha} \quad v(\{2,3,4\}) = (7^{\alpha} + 2) - 3 \cdot 3^{\alpha}$$

$$v(\{1,3,4\}) = (19^{\alpha} + 2) - 3 \cdot 7^{\alpha} \quad v(\{3,4\}) = 0$$

$$v(\{2,4\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha} \quad v(\{2,3\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha}$$

Cooperative game

- pair ([N], v) where $[N] = \{1, ..., N\}$ is a finite set of players
- $v : 2^{|N|} \to \mathbb{R}$ is the *characteristic function*, a mapping a alliance $C \subseteq [N]$ to its payment v(C)
- $\cdot \ \textit{v}(\mathcal{C})$ is the value that \mathcal{C} could obtain if they choose to cooperate

$$v(\{1,2,3,4\}) = (19^{\alpha} + 7^{\alpha} + 2) - 4 \cdot 7^{\alpha} \quad v(\{2,3,4\}) = (7^{\alpha} + 2) - 3 \cdot 3^{\alpha}$$

$$v(\{1,3,4\}) = (19^{\alpha} + 2) - 3 \cdot 7^{\alpha} \quad v(\{3,4\}) = 0$$

$$v(\{2,4\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha} \quad v(\{2,3\}) = (7^{\alpha} + 1^{\alpha}) - 2 \cdot 4^{\alpha}$$

- The problem is then to find where there is an alliance where no one can be excluded without decreasing the other player's profit
- In Game Theory, this is given by the notions of objections and counter-objections

Objection

A pair (\mathcal{P}, y) is said to be objection of *i* against *j* if:

- \mathcal{P} is a subset of [N] such that $i \in \mathcal{P}$ and $j \notin \mathcal{P}$ and
- if y is a vector in $\mathbb{R}^{[N]}$ such that $y(\mathcal{P}) \leq v(\mathcal{P})$, for each $k \in \mathcal{P}$, $y_k \geq x_k$ and $y_i > x_i$ (agent *i* strictly benefits from y, and the other members of \mathcal{P} do not do worse in y than in x).

Counter-objection

A pair (Q, z) is said to be a *counter-objection* to an objection (\mathcal{P}, y) if:

- $\cdot \mathcal{Q}$ is a subset of [N] such that $j \in \mathcal{Q}$ and $i \notin \mathcal{Q}$ and
- if z is a vector in $\mathbb{R}^{[N]}$ such that $z(\mathcal{P}) \leq v(\mathcal{P})$, for each $k \in \mathcal{Q} \setminus \mathcal{P}$, $z_k \geq x_k$ and, for each $k \in \mathcal{Q} \cap \mathcal{P}$, $z_k \geq y_k$ (the members of \mathcal{Q} which are also members of \mathcal{P} get at least the value promised in the objection).

Objection

A pair (\mathcal{P}, y) is said to be *objection of i against j* if:

- \mathcal{P} is a subset of [N] such that $i \in \mathcal{P}$ and $j \notin \mathcal{P}$ and
- if y is a vector in $\mathbb{R}^{[N]}$ such that $y(\mathcal{P}) \leq v(\mathcal{P})$, for each $k \in \mathcal{P}$, $y_k \geq x_k$ and $y_i > x_i$ (agent *i* strictly benefits from y, and the other members of \mathcal{P} do not do worse in y than in x).

Counter-objection

A pair (Q, z) is said to be a *counter-objection* to an objection (\mathcal{P}, y) if:

- Q is a subset of [N] such that $j \in Q$ and $i \notin Q$ and
- if z is a vector in $\mathbb{R}^{[N]}$ such that $z(\mathcal{P}) \leq v(\mathcal{P})$, for each $k \in \mathcal{Q} \setminus \mathcal{P}$, $z_k \geq x_k$ and, for each $k \in \mathcal{Q} \cap \mathcal{P}$, $z_k \geq y_k$ (the members of \mathcal{Q} which are also members of \mathcal{P} get at least the value promised in the objection).

For organizations not changing the alliance's profit, we can show that:

Lemma 1.

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let x be a feasible stable imputation. For each organization $O^{(j)}$ in [N] such that $v([N]) = v([N] \setminus \{j\})$, we have $x_j = 0$. For organizations not changing the alliance's profit, we can show that:

Lemma 1.

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let x be a feasible stable imputation. For each organization $O^{(j)}$ in [N] such that $v([N]) = v([N] \setminus \{j\})$, we have $x_j = 0$.

For organizations helping increase the alliance's profit

Lemma 2.

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let $O^{(i)}$ and $O^{(j)}$ be organizations such that $v([N]) > v([N] \setminus \{i\})$ and $v([N]) > v([N] \setminus \{j\})$. Let $\mathcal{O} = [N] \setminus \{j\}$ be a subset of organizations. Let (\mathcal{O}, y) be an objection of $O^{(i)}$ against $O^{(j)}$. In order to have a counter-objection to (\mathcal{Q}, z) , with $\mathcal{Q} = [N] \setminus \{i\}$ of $O^{(i)}$ against $O^{(i)}$, a sufficient condition is:

$$x_j - x_i \le p(\{j\}) - p(\{i\}) - cost^{(-i)} + cost^{(-j)}$$

For organizations helping increase the alliance's profit

Lemma 2.

Let (\mathcal{O}, y) be an objection of $O^{(i)}$ against $O^{(j)}$. In order to have a counter-objection to (\mathcal{Q}, z) , with $\mathcal{Q} = [N] \setminus \{i\}$ of $O^{(j)}$ against $O^{(i)}$, a sufficient condition is:

$$x_j - x_i \le p(\{j\}) - p(\{i\}) - cost^{(-i)} + cost^{(-j)}$$

Intuition

ObjectionCounter-objection $v(\mathcal{O}) = \sum_{k \in [N] \setminus \{i,j\}} y_k + y_i$ $v(\mathcal{Q}) = \sum_{k \in [N] \setminus \{i,j\}} z_k + z_j$ $v(\mathcal{Q}) - v(\mathcal{O}) \ge x_i - x_j$

Theorem 3.

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let A be a subset of organizations $\{j \in [N] : v([N]) > v([N] \setminus \{j\})\}$. There exists a unique stable imputation x if it fulfills all the three following conditions:

1.
$$\forall j \in [N] \setminus A, x_j = 0$$

2. $\forall j \in A, x_j = cost^{(-j)} + p(\{j\}) - \frac{1}{|A|} \cdot \left(cost^{(A)} + \sum_{k \in A} cost^{(-k)}\right)$
3. $\forall j \in A, cost^{(-j)} + p(\{j\}) \ge \frac{1}{|A|} \cdot \left(cost^{(A)} + \sum_{k \in A} cost^{(-k)}\right)$

Corollary 4 (a lower bound for non-empty bargaining sets).

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let A be a subset of organizations $\{j \in [N] : v([N]) > v([N] \setminus \{j\})\}$. There exists a unique stable imputation x if $p(A) \ge cost^{(A)}$.

Corollary 5.

Let [N] be a set of organizations with their sets of jobs. If all organizations have as objective function $(\sum_j C_j)$ or $(\sum_j E_j)$, then Algorithm 1 determines in polynomial time whether [N] can form an alliance and, if possible, returns the imputation vector.

Corollary 4 (a lower bound for non-empty bargaining sets).

Let [N] be a set of organizations and v be the characteristic function (corresponding to the cost savings). Let A be a subset of organizations $\{j \in [N] : v([N]) > v([N] \setminus \{j\})\}$. There exists a unique stable imputation x if $p(A) \ge cost^{(A)}$.

Corollary 5.

Let [N] be a set of organizations with their sets of jobs. If all organizations have as objective function $(\sum_{J} C_{J})$ or $(\sum_{J} E_{J})$, then Algorithm 1 determines in polynomial time whether [N] can form an alliance and, if possible, returns the imputation vector.

ALLIANCE DETECTION ALGORITHM

Input: [*N*] of organizations, function *v* (cost savings), and cost^(.).

Output: (Whether there is a alliance or not and the imputation vector)

- $_1\,$ Compute the lowest cost schedule ${\cal SH}$
- ² forall organizations $O^{(k)} \in [N]$ do
- ³ Compute the lowest cost local schedule $\left(\cos t_{\text{local}}^{(k)} = p(\{k\}) \right)$
- 4 Compute the lowest cost schedule using all resources except $O^{(k)}$'s $(cost^{(-k)})$
- $_{\rm 5}\,$ Compute the lowest cost schedule using all the resources and its cost (cost $^{[\rm M])}$
- 6 forall organization $O^{(k)} \in [N]$ do
- 7 Compute $p([N] \setminus \{k\}) \left(= \sum_{j \in [N], j \neq k} p(\{j\})\right)$
- 8 Compute $v([N] \setminus \{k\}) (= p([N] \setminus \{k\}) \operatorname{cost}^{(-k)})$
- Compute $A = \{j \in [N] \mid v([N]) > v([N] \setminus \{j\})\}, p(A), \operatorname{cost}^{(A)} and \sum_{k \in A} \operatorname{cost}^{(-k)}$
- 10 if $p(A) < cost^{(A)}$ then
- 11 **return** (alliance=false, imputation=Ø)
- 12 forall organization $O^{(k)} \in A$ do
- 13 compute x_k according to Property (2) of the Theorem;
- 14 **return** (alliance=true, imputation=x)

- We found the basic conditions needed for (stable) alliances for problems that can be optimally solved in polynomial time
- Can we adapt this technique for other objectives like makespan? A recent work by Azar et al. (ACM Economics and Computation 2015) may be the solution
- The bargaining set of this game suggests a relation of this problem with truthful mechanisms from algorithmic mechanism design