
Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

A challenge of packing CSS-sprites

J.Marsza lkowski, J.Mizgajski, D.Mokwa, M.Drozdowski

Institute of Computing Science, Poznań University of Technology

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Motivation

Short web page load time is important for the Internet industry.

Web pages are heavily loaded with small images (icons, buttons,
backgrounds, infrastructure elements, etc.)

According to some studies over 60% of all HTTP requests for
static content are images.

The interaction with a web server has a relatively long constant
delay (a.k.a. latency, startup time).

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Consequences of the latency (startup time)

time time

bytes
transferred

latency L

latency L

latency L

latency L

better

bytes
transferred

.

tile 1 sprite: (tiles 1+2+3+4)tile 2 tile 3 tile 4

Fetching many images separately multiplies fixed overheads and
results in extensive web page loading time.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

CSS-sprite packing = Spriting

CSS-sprite packing is a technique used in web design to avoid
repetition of web interactions and improve performance of
displaying web pages.

...

tiles

→

sprite

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Challenges

Given a set of tiles we intend to combine them into a set of
sprites for minimum downloading time.

Factors determining downloading time:

geometric packing,

image compression,

communication performance.

These three factors are tightly interrelated.

Other factors e.g. browser rendering efficiency, server cache
performance, are beyond the scope of this presentation.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric challenges

Tiles are rectangles, so constructing a sprite is a 2D
packing/cutting problem.

HOWEVER, ...

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric challenges, 2D cutting/packing, but...

Which packing model?

Two models of 2D cutting/packing are applicable:

Rectangle packing (RP) - find the smallest area bounding box
enclosing the tiles.

Strip packing (SP) - put tiles on an infinite strip, there are
two versions:

tile 1

tile 1

Waste space

Waste space

tile 2
tile 2

ti
le

 3 ti
le

 3

tile 6

tile 6

tile 7

tile 7ti
le

 8

ti
le

 8ti
le

 4

ti
le

 4

ti
le

 5

ti
le

 5

vertical layout horizontal layout

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric challenges, 2D cutting/packing, but...

To waste or not to wase?

We do not use any material substance which 1) should be
conserved, or 2) would impose a bounding box.

Image compression algorithms (in JPEG, GIF, PNG) are capable of
dealing with the waste. So is the wasted area an issue?

→ Image compression algorithms are not perfect in eliminating
waste, so waste translates to communication time.

→ Image area translates to memory usage in browser.

We should not waste image area!

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric challenges, 2D cutting/packing, but...

What is the objective function?

Communication time depends on sprite(s) sizes (in bytes).

Sprite size(s) depends not only on the sizes of tiles rectangles,
but also on
→ variety of tile compression methods (JPEG, PNG, GIF),
→ tile neighborhood matters,
→ complexity of the image.

Hence, the objective function cannot be calculated as easily as in
the classic 2D cutting/packing.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Image compression

Image compression challenges:

even given a solution of 2D packing, compression for
minimum size is NP-hard,

compression is time-consuming anyway (even ignoring
combinatoric aspects)
→ only a few attempts of alternative packing and
compressing are possible,

lossy image compression (JPEG) allows for small images at the
cost of quality, what level of information loss is satisfactory?

image compressor settings → postprocessors

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Communication Performance Challenges

Quality of sprites should be measured as the downloading time.
However,

• A variety of browser, communication, server platforms, exist
shared by activities with unknown timing
→ communication time is unpredictable and nondeterministic,
→ dispersion of performance parameters is unavoidable.

• Computational complexity of communication performance model
→ packet-level simulation impossible, we need a simple formula of
communication time.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Communication Performance and Objective Function

Time of transferring set of sprites S over c concurrent channels:

T (S, c) = max

{
1

c

m∑
i=1

(L +
fi

B(c)/c
),

m
max
i=1
{L +

fi
B(c)/c

}

}

where:
m - number of sprites,
fi - size of spite i ,
L - latency (startup time),
B(c) - aggregate bandwidth over c communication channels,

And by the way, this is McNaughton’s algorithm!

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Communication Performance and Objective Function

Objective function

T (S) =
cmax

min
c=1
{T (S, c)} (1)

where:
cmax - maximum number of usable communication channels.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Latency L distribution

1E+00

1E+01

1E+02

1E+03

1E+04

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o

.
o

f
u

se
rs

Latency L [ms]

mode 312 ms

median 352 ms

mean 531 ms

6 ms

148036 ms

43876

min

max

No. of points

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Bandwidth B(1) distribution

0

100

200

300

400

500

600

700

800

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

N
o

.
o

f
u

se
rs

Speed B(1) [kB/s]

mode 110 kB/s

median 464 kB/s

mean 811 kB/s

min 2 kB/s

max 333 MB/s

No. of points 26968

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Communication Speedup in Parallel Channels

Distribution of browser parallel channel number limit

Number of channels ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9
accumulated frequency 100% 81% 68% 65% 61% 57% 12% 6%

Speedups of parallel communication

speedups B(3)
B(1)

B(5)
B(1)

B(7)
B(1)

B(9)
B(1)

medians 1.36 1.56 1.66 1.77
SIQR 0.39 0.60 0.61 0.68

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

CSS-sprite Packing Problem Formulation

Given:
• set T = {T1, . . . ,Tn} of n tiles (JPEG, PNG, GIF images),
• communication link parameters: latency L and bandwidths vector
B of length cmax .

Construct a set of sprites S such that
• objective function T (S) defined in (1) is minimum,
• rotation of tiles is not allowed,
• each tile is comprised in only one sprite,
• each sprite is transferred in one communication channel.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

CSS-sprite Packing Problem Formulation

Which means in practice:
• choose the number of sprites m,
• distribute the n tiles to m sprites,
• pack in 2D the tiles in m sprites,
• compress the m sprites,
• and do it all for minumum objective function T (S).

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Overview

Spritepack is our method to solve CSS-sprite packing problem.

Spritepack progresses in four steps:
• tile classification,
• geometric packing,
• merging with image compression,
• postprocessing.

commandline application written in C++ using MS Visual Studio 12 and Magick++ API to ImageMagick.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Tile classification

Goal:
• grouping tiles with similar sets of colors to retain as low color
depth as possible.

Image classes:
- 8 bit per pixel (bpp) indexed color PNG without/with transparency

(PNG8i/PNG8it),
- 8 bpp gray-scale PNG without/with transparency (PNG8g/PNG8gt),
- 24 bpp truecolor PNG without transparency (PNG24),
- 32 bpp truecolor PNG with transparency (PNG32t),
- JPEG.

All GIFs go to PNG8i, or PNG8it.
JPEG go to PNG only if it reduces size.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric packing

Goals:
• grouping tiles with similar shape for packing with small waste,
• reducing runtime, a fast proxy to the full version of the algorithm.

Geometric packing operates on rectangles (not images) and
minimizes area.

input: set T of tiles
1: Create a group for each input tile;

2: while number of groups is bigger than k
2.1: bp1, bp2 ← nil; bw ←∞; // create an empty group pair with waste bw
2.2: for all unevaluated group pairs g1, g2 with equal image classes
2.2.1: join g1, g2 into a new group g3;
2.2.2: apply to g3 all geometric packing strategies;

record the packing with minimum geometric waste w3;
2.2.3: if w3 < bw then bp1 ← g1, bp2 ← g2, bw ← w3;
2.3: endfor;
2.4: create a new group from bp1 ∪ bp2, remove bp1, bp2, reduce number of groups by 1;

3: endwhile

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Geometric Packing Strategies

Strip packing:

First-Fit,Best-Fit Decreasing Height (FFDH, BFDH),

FFDH, BFDH with Two-Fit (FFDH2F, BFDH2F),

Bottom-Left (BL), Modified Bottom Left (MBL).

Rectangle packing:

Variable Height Left Top (VHLT)

k - number of output tile groups - a control parameter

The method for geometric packing is a greedy hyperheuristic.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Merging with image compression

input: k groups of tiles
1: Create a sprite for each input tile group; record current set of sprites as solution S

and as the best solution S∗ with objective T∗ = mincmax
c=1 T (S, c);

2: while number of sprites is bigger than 1
2.1: bs1, bs2, bs3 ← nil; bS ←∞; // create an empty sprite pair and empty sprite junction
2.2: for all unevaluated sprite pairs s1, s2

2.2.1: apply to the tiles in s1 ∪ s2 all strategies of merging with image compression;
record as s3 the sprite with minimum size S3;

2.2.2: if S3 < bS then bs1 ← s1, bs2 ← s2, bs3 ← s3; bS ← S3;
2.3: endfor;
2.4: S \ {bs1 ∪ bs2} ∪ bs3; calculate objective T = mincmax

c=1 T (S, c)
2.5: if T < T∗ then S∗ ← S; T∗ ← T ;
3: endwhile;

Again a greedy hyperheuristic.

This time we opearte on images and minimize objective function
T (S), not the area.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Strategies of Merging with Image Compression

All combinations of
geometric packing strategies × image compression methods.

Image compression methods are:
i) for PNG - minimum color depth is selected and all PNG filters
are tested,
ii) if both sprites are JPEGs then JPEG formats with the baseline
and progressive compression are tested (otherwise use PNG).

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Postprocessing

Image sizes could have been reduced by applying different
compression settings.

But it is not possible to verify alternative compression settings
directly in the earlier step because it is too time-consuming.

Spritepack post-optimizes sprites obtained in the previous stage.

Applied post-processors: pngout, jpegtran.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Test Setting

Instances:
32 test sets representing skins and other reusable GUI elements of
popular open-source web applications ranging from n = 5 to
n = 1028 tiles, 3132 images in total in GIF, PNG, JPEG.

Communication parameters:
L = 352ms, B = [464, 557, 631, 685, 723, 750, 770, 791, 821] kB/s
measured on real users.

Computing platform:
PC with i5-3450 CPU (3.10GHz), 8GB of RAM, Windows 7

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Reduction of the Total Sprite Sizes

-80

-60

-40

-20

 0

 20

 40

 60

 4 6 8 10 12 14 16

fi
le

 s
iz

e
re

du
ct

io
n

[%
]

k

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Increase in Image Area

1E-2

1E-1

1E0

1E1

1E2

1E3

 4 6 8 10 12 14 16

in
cr

ea
se

 in
 a

re
a

[%
]

k

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Runtime

1E0

1E1

1E2

1E3

1E4

 4 6 8 10 12 14 16

tim
e

[s
]

k

The four stages consumed 5%, 1%, 81%, 13% of runtime, resp.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Comparison with other methods - file sizes

Instance input shoebox Spritepack
name files size [B] sprites size [B] sprites size [B]
magneto hardwood 9 373610 1 482828 3 294128
modx ecolife 10 50947 1 366663 3 48891
mojoportal thehobbit 39 218993 1 726364 7 154486
oscommerce pets 203 1201692 1 1683872 6 673785

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Comparizon with other methods - download time

Instance medians [ms] SIQR [ms]
name input shoebox Spritepack input shoebox Spritepack
magneto hardwood 1723 764 574 1597 441 330
modx ecolife 685 727 244 1502 427 119
mojoportal thehobbit 776 954 302 456 539 204
oscommerce pets 3653 1831 931 1453 872 537

Correlation between the download times and the objective function
(1) was 0.952 and p-value was below 2E-06.

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Conclusions

But is it still scheduling? Where is scheduling?

Scheduling is embodied in the objective function (1) modeling
communication delay à la P|pmtn|Cmax solved by McNaughton’s
algorithm.

There are also other familiar toys:
- set partitioning (assigning tiles to sprites),
- 2D cutting/packing (tiles in sprites).

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

Toward the future worlds ...

But there is much more in this work:
- image compression efficiency,
- communication performance modeling.

Still remain untouched:
- new/alternative technologies: HTTP 2.0, SVG, data URI.
- what do people actually fetch and see (tile filtering),
- clustering viewers according to communication performance,
- page rendering sequencing,
- in browser rendering speed and quality ...

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

and what have we done ...

P
ic

b
y

D
.M

ro
z,

in
:

S
.L

em
,

B
a

jk
i

ro
b

o
to

w
.

C
yb

er
ia

d
a

,
W

yd
.L

it
er

a
ck

ie
,

1
9

6
5

U
K

:
T

h
e

C
yb

er
ia

d
–

fa
b

le
s

fo
r

th
e

cy
b

er
n

et
ic

a
g

e,
1

9
7

5
.

J.Marsza lkowski, J.Mizgajski, D.Mokwa, M.Drozdowski,
Analysis and Solution of CSS-Sprite Packing Problem,
ACM Trans. on the Web (10)1, Dec.2015, Art.No.1

Introduction Practical Considertations Problem Formulation Spritepack Evaluation Conclusions

and what have we done ...

P
ic

b
y

D
.M

ro
z,

in
:

S
.L

em
,

B
a

jk
i

ro
b

o
to

w
.

C
yb

er
ia

d
a

,
W

yd
.L

it
er

a
ck

ie
,

1
9

6
5

U
K

:
T

h
e

C
yb

er
ia

d
–

fa
b

le
s

fo
r

th
e

cy
b

er
n

et
ic

a
g

e,
1

9
7

5
.

J.Marsza lkowski, J.Mizgajski, D.Mokwa, M.Drozdowski,
Analysis and Solution of CSS-Sprite Packing Problem,
ACM Trans. on the Web (10)1, Dec.2015, Art.No.1

	Introduction
	Practical Considertations
	Problem Formulation
	Spritepack
	Evaluation
	Conclusions

