Scheduling Models and Algorithms for the Orderly Colored Longest Path

Giovanni Felici
Istituto di Analisi dei Sistemi ed Informatica
Rome, Italy
Gaurav Singh
BHP Billiton
Perth, Australia
Marta Szachniuk, Jacek Blazewitz
Poznań University of Technology
Poznan, Poland

Tributes

- Discrete Applied Maths, 2015
- RAIRO, 2014
- D. de Werra
- M.C. de Cola

Outline

- Introduction to OCLP
- OCLP and NMR
- OCLP in scheduling
- Complexity
- Flow based models
- Scheduling-like models
- Experimental results
- Conclusions

Arc Colored Graph
Alternating paths
Properly Colored Path
Orderly Colored Path
Shortest
Longest

a)

b)

d)

Original Motivation: NMR assignment

Nuclear Magnetic Resonance (NMR) spectroscopy magnetic properties of certain atomic nuclei are exploited to determine physical and chemical properties of atoms or molecules in which they are contained.

- Applying a magnetic field, protons resonate
- a number of cross-peaks are generated by pairs of atoms whose protons resonate together if they are close in space.
- Starting from a trace of NMR spectrum we compute the structural parameters needed to determine the 3D structure of the molecule

M. Szachniuk, M.C. De Cola, G. Felici, J. Blazewicz, D. de Werra. Optimal pathway reconstruction on 3D NMR maps, Discrete Applied Mathematics, 182, (2015)

Original Motivation: NMR assignment

- Each arc is an atom involved in the crosspeaks
- The transfer of magnetization is fixed between atom types (order of colors)
- A path between the cross peaks correspond to the magnetization transfer among the atoms, important to determine the structure (folding) of the protein
- A longest orderly colored path represent the most likely magnetization transfer of the protein

Fragment of the NOESY-HMQC 3D NMR spectrum with a path (in $Y Z-X$ transition order) and the corresponding edge-colored graph

2

(16)

Scheduling Applications

OCLP may be suited for modeling also certain interesting scheduling problems, where:

- A number of locations (operations) must be visited (done)
- In each site, an item belonging to a class can be picked up (processed)
- An item of class i can be picked (processed) only if an item of class (i-1) has just been picked up

Waste collection

- A road network
- Colors represent time windows
- Each arc is a stretch of road where waste must be collected in a given time window
- Download arcs may be present
- Find a path that uses consequent time windows and covers largest number of arcs

Warehouse picking

- An order is composed of items of different classes (colors)
- Items are located in aisles
- Items must be picked in a given sequence one at a time
- Orders must be discharged at a sink node
- Optimise a route for a picker to assemble as many orders as possible

Complexity Results

- Abouelaoualim et al. (2008): find k arc or node disjoint PEC paths is NPcomplete; easy only for special classes
- Gourves et al.(2009): the properly edge-colored s-t paths which visit all vertices of the graph a prescribed number of times can be found in polynomial time if the graph has no PEC cycles
- Gourves et al.(2009): PEC Eulerians s-t path problem is polynomially solvable for c-edge-colored graphs, which do not contain PEC cycles
- Bang-Jensen and Gutin (1998): finding a longest alternating simple path in a 2-edge-colored complete multigraph is computationally easy
- Adamiak et al. (2004) prove NP-hardness of the Hamiltonian path problem in 2-edge-colored simple graphs
- When $\mathrm{n}=2$, OCLP is equivalent to finding a properly colored path
- Szachniuk at al. (2015): OCLP is NP-hard for $\mathrm{n}>2$

OCLP: How difficult in practice ?

Problem	Time to Solve
L0_100_3_70	3.41
L0_100_3_50	12.60
L0_100_6_70	14.88
L0_100_6_50	67.73
L0_100_10_70	$3,425.09$
L0_100_10_50	$>3,600.01$

Previous Models based on flow formulation

In previous work, 3 models based on the expansion of the nodes (+arcs) and on a flow-based longest path formulation are compared.
M. Szachniuk, M.C. De Cola, G.Felici, J. Blazewicz. The Orderly Colored Longest Path Problem - a survey of applications and new algorithms. RAIRO - Operations Research, 48-01 (2014)
M. Szachniuk, M.C. De Cola, G. Felici, J. Blazewicz, D. de Werra. Optimal pathway reconstruction on 3D NMR maps, Discrete Applied Mathematics, 182, 134-149, (2015)

Model 1

- We use $\mathbf{n} \mathbf{x} \mathbf{n}$ nodes (wlog, start from a given color)
- Arcs are divided by order in the path
- Packing constraints on the n copies of the same node ensure that path does not go twice through the same node

Model 2

- We use nxc nodes
- The graph is not acyclic, need cycle/subtour elimination constraints

13

Model 3

- We use nxc nodes
- Each node is expanded in a subgraph
- Once entered a subgraph, can use exactly 1 arc in it
- Need cycle/subtour elimination constraints

Results on NMR-type instances

	Instance size					
Total domina-						
Method	30	40	50	75	100	tion index
7-BC	0	1	7	4	3	15
7-IC	0	2	1	1	0	4
8-BC	0	0	1	5	7	13
8-IC	0	0	0	0	0	0
Total	0	3	9	10	10	32

	Experiment type	
Method	homonuclear	heteronuclear
7-BC	10	5
7-IC	1	1
8-BC	4	9
8-IC	0	0

Table 2: Method domination acc. instance size (instances with computing time ≥ 10 s).

Table 3: Method domination acc. experiment type (instances with size ≥ 50).

Scheduling Based Models

A different setting: assume starting color, define order of nodes according to their arcs

- \mathbf{N} : set of nodes
- i:index of node
- \mathbf{j} : index of position with color c_{j} associated with it
- $N(i, j)$: set of nodes k that are connected to i with an arc of color c_{j}
- $x_{i j}=1$ if node i is visitied in position $j, 0$ otherwise
- $\mathbf{y}_{\mathrm{j}}=1$ if the sink node is visited in position $\mathrm{j}, 0$ otherwise

Scheduling Model 1

$\min \sum_{j=1}^{n} y_{j} \quad$ Go to sink as late as possible
s.t.
$\sum_{j=1}^{n} x_{i j} \leq 1 \quad \forall i \quad$ At most a node in each position
$y_{j}+\sum_{j=1}^{n} x_{i j}=1 \quad \forall j \quad$ A position to each node, maybe the sink
$y_{j} \leq y_{j+1} \quad \forall j<n \quad$ Once sink, stay sink
$x_{i j} \leq y_{j+1}+\sum_{k \in N(i, j)} x_{k, j+1} \quad \forall 1 \leq(i, j) \leq n, j \neq n$
To put node i in position $\mathrm{j}+1$, I must have a node in position j that is connected with an arc of the proper color... or just go to $\operatorname{sink}(:$

Scheduling Model 2: Get rid of y's

$\max \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \quad$ Assign as many as possible

s.t.

$$
\begin{aligned}
& \sum_{j=x_{i j}^{n}}^{n} \quad \forall i \\
& \sum_{j=1}^{n} x_{i j}=1 \quad \forall j
\end{aligned}
$$

As before

$$
x_{i j}+\sum_{k: N(k, j-1)=N(i, j-1)} x_{k j} \sum_{k \in N(i, j-1)} x_{k, j-1} \quad \forall 1 \leq(i, j) \leq n, j \neq 1
$$

Scheduling Model 3: new objective function

$$
\max \sum_{i=1}^{n} \sum_{j=1}^{n}(j+1) x_{i j}
$$

Removes simmetries by pushing solution towards positions with large index, thus mazimizing path length

Details on Experiments

1. Generate arcs according to overall graph density
2. Color arcs at random:
a) Assign color at random to 10% of arcs
b) Chose other colors with eq. prob. among feasible colors
c) Inject a longest feasible path or not

- New instances with $\mathrm{n} \geq 3$ colors
- Number of nodes $(50,70,75,100)$
- Number of colors $(3,5,10)$
- Density of graph (50\%, 70\%)
- Warrant on the presence of hamiltonian OCLP path or not

Model Sizes

- Dimension of associated MIPs: cycle based models are indeed smaller
- Size grows with $\mathrm{n} \times \mathrm{c}$ in Flow Models, with n^{2} in scheduling like models.

	Variables			Constraints		
	mod1	$\bmod 2$ mod3	Cycle	mod1	$\bmod 2$ mod3	Cycle
L0_100_10_50	10,100	10,100	6,788	10,200	10,100	1,202
L0_100_10_70	""	"	8,796	""	""	"
L0_100_3_50	""	""	5,388	""	""	502
L0_100_3_70	""	""	7,396	""	""	"
L0_100_6_50	""	""	5,988	""	""	802
L0_100_6_70	""	""	7,996	""	""	""

	Solution times (secs)			
Problem	mod1	mod 2	mod 3	cycles
L0_100_10_50	$3,600.00$	$3,600.00$	$3,600.00$	$3,600.00$
L0_100_10_70	$3,600.00$	$3,600.00$	$3,425.09$	$3,600.00$
L0_100_3_50	12.60	14.10	18.56	7.67
L0_100_3_70	3.46	3.41	4.07	8.66
L0_100_6_50	$1,014.54$	$1,109.70$	67.73	$3,600.01$
L0_100_6_70	56.86	17.86	14.88	748.38
L0_50_10_50	$3,600.00$	$3,600.00$	$2,047.16$	$3,600.00$
L0_50_10_70	656.58	279.29	715.92	$3,600.00$
L0_50_3_50	3.83	11.51	11.05	1.33
L0_50_3_70	0.50	0.82	0.63	1.01
L0_50_6_50	79.46	163.44	138.32	$3,600.06$
L0_50_6_70	15.87	14.68	10.87	135.04
L0_75_10_50	$3,600.00$	$3,600.00$	$3,600.00$	$3,600.00$
L0_75_10_70	$1,611.62$	550.86	886.34	$1,800.00$
L0_75_3_50	6.81	4.40	6.89	7.51
L0_75_3_70	1.64	2.16	10.44	3.91
L0_75_6_50	79.39	$1,126.76$	90.56	$3,600.00$
L0_75_6_70	11.79	45.88	48.94	209.31
L1_100_10_50	0.43	0.21	0.18	$3,600.00$
L1_100_10_70	$1,979.43$	0.26	2.48	$3,600.00$
L1_100_3_50	36.93	0.38	2.85	7.22
L1_100_3_70	0.56	0.46	4.15	9.84
L1_100_6_50	948.72	0.28	0.23	$1,656.57$
L1_100_6_70	13.88	0.32	0.33	$1,079.58$
L1_50_10_50	696.84	0.06	0.32	$3,600.00$
L1_50_10_70	51.50	0.08	0.05	$3,600.00$
L1_50_3_50	1.07	0.10	0.06	0.27
L1_50_3_70	2.01	0.10	0.27	1.28
L1_50_6_50	0.14	0.06	0.07	315.76
L1_50_6_70	33.35	0.06	0.24	67.55
L1_75_10_50	$3,600.00$	0.11	0.11	$3,600.00$
L1_75_10_70	569.61	0.13	0.14	$3,600.00$
L1_75_3_50	4.51	0.21	0.97	4.77
L1_75_3_70	7.35	0.24	0.65	3.07
L1_75_6_50	284.47	0.15	0.12	240.82
L1_75_6_70	72.74	0.15	0.19	41.95

LO: hamiltonial path not injected

L1: hamiltonial path injected

percentage not solved within 1 hour		Avg Solution Time	
L0	11.11\%		
L1	0.00\%		
L0_100_10_50, L0_75_10_50			
		Mod1	729.4
		Mod2	493.0
percentage not solved		Mod3	408.6
Mod1	13.89\%	Cycles	1576.4
Mod2	11.11\%		
Mod3	5.56\%		
Cycles	30.56\%		

Fractional cycle separation not convenient when we have many colors

Scheduling - like models are larger but faster

Scheduling - like models are larger but faster

Problems without injected longest path are more interesting

- Denser problems are easier
- Problems with less colors are easier

Conclusions

- Orderly Colored Path Problems has been introduced
- Original motivation to be found in NMR spectra analysis
- Could be used to model complex scheduling problems?
- Problem is in NP
- Already proposed Flow based models have been described
- New Scheduling-like models are introduced and tested (successfully!)
- Model Comparisons on randomly generated instances of larger size
- New formulation performs better with many colors
- Potentially interesting for scheduling applications
- Study additional variants where path colored arcs obey general constraints

Thanks

