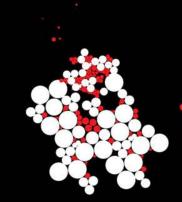
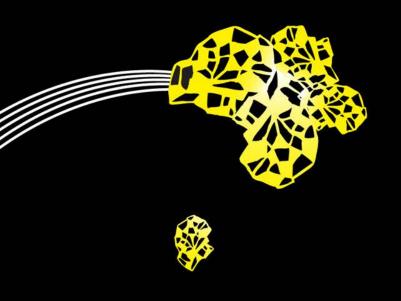
UNIVERSITY OF TWENTE.

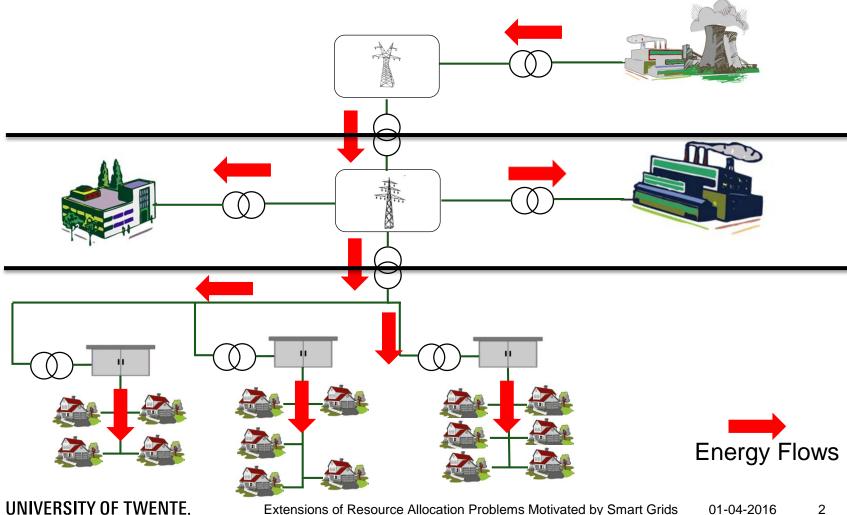


EXTENSIONS OF RESOURCE ALLOCATION PROBLEMS MOTIVATED BY SMART GRIDS

JOHANN HURINK, THIJS VAN DER KLAUW, MARCO GERARDS

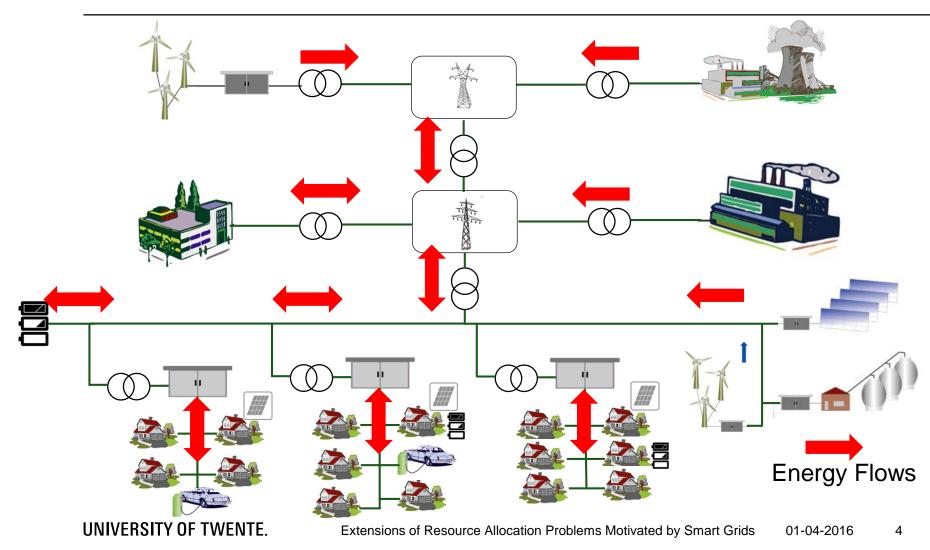


INTRODUCTION POWER SYSTEMS OF THE 20TH CENTURY



INTRODUCTION POWER SYSTEMS OF THE 21ST CENTURY – ENERGY TRANSITION

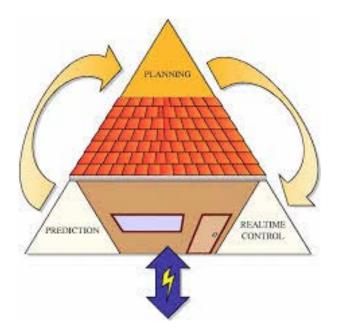
INTRODUCTION POWER SYSTEMS OF THE 21ST CENTURY – ENERGY TRANSITION



DECENTRALIZED ENERGY MANAGEMENT TRIANA

Demand Side Management: Negotiate consumption patterns of controllable appliances through a (cooperative) coordination mechanism

- <u>Predict</u> flexibility on house level
- <u>Plan</u> on neighbourhood level
- Account for difference with <u>realtime</u> <u>control</u> where needed

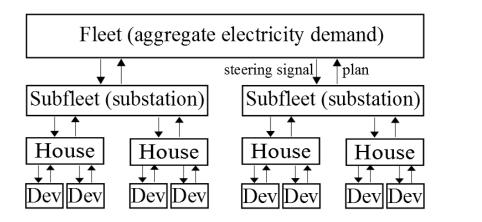


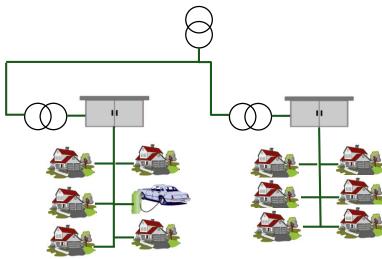
5

All done for fixed length time intervals, e.g., 15 minutes to align with power markets

DECENTRALIZED ENERGY MANAGEMENT TRIANA – PROFILE STEERING

Use structure of the grid





- Goal at the highest level may be e.g., peak shaving;
 - this gives a desired profile, e.g., flat profile

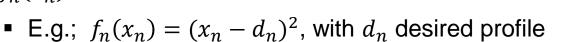
DEVICE LEVEL PLANNING REMAINDER OF THIS TALK

- Consider two device level planning problems
- Electric Vehicle (EV)
 - Base case
 - Restricting the charging options
- Combined heat and power (CHP) with storage
 - Intermediate bounds on the storage

7

DEVICE LEVEL PLANNING ELECTRIC VEHICLE – CHARGING PROBLEM

- Given:
 - N time intervals
 - EV needs to charge *C* units of energy
 - X_n^{max} max charge rate for interval n
 - $f_n(x_n)$ convex cost function for n



• Problem:

$$\min_{x} f(x) = \sum_{n=1}^{N} f_n(x_n),$$

s.t. $\sum_{n=1}^{N} x_n = C,$
 $0 \le x_n \le X_n^{max} \quad \forall n.$

ELECTRIC VEHICLE – CHARGING PROBLEM

- Problem is a form of resource allocation;
 - Separable convex objective
 - Convex constraint set
 - Resource constraint $\sum_{n=1}^{N} x_n = C_n$
- Well researched if constraints set is a bounding box
 - Optimality conditions (Gibbs' Lemma): There exists a λ with

$$f'_{n}(x_{n}) = \lambda \qquad \Leftrightarrow \qquad 0 < x_{n} < X_{n}^{max}$$
$$f'_{n}(x_{n}) \le \lambda \qquad \Leftrightarrow \qquad x_{n} = X_{n}^{max}$$
$$f'_{n}(x_{n}) \ge \lambda \qquad \Leftrightarrow \qquad x_{n} = 0$$

DEVICE LEVEL PLANNING ELECTRIC VEHICLE – OPTIMAL ALGORITHM

• Recall for profile steering; $f_n = (x_n - d_n)^2$

• So
$$f'_n = 2(x_n - d_n)$$

• Write x_n in terms of λ based on conditions:

$$x_n(\lambda) = \begin{cases} 0 & \text{if } \lambda \leq -2d_n \\ \frac{\lambda}{2} + d_n & \text{if } -2d_n < \lambda < 2(X_n^{max} - d_n) \\ X_n^{max} & \text{else} \end{cases}$$

• $x(\lambda) = \sum_{n=1}^{N} x_n$ piecewise linear increasing function of λ with breakpoints: $\{-2d_1, 2(X_1^{max} - d_1), \dots, -2d_N, 2(X_N^{max} - d_N)\}$

DEVICE LEVEL PLANNING ELECTRIC VEHICLE – OPTIMAL ALGORITHM

 $x(\lambda)$ with breakpoints $\{-2d_1, 2(X_1^{max} - d_1), ..., -2d_N, 2(X_N^{max} - d_N)\}$

- Find two adjacent breakpoints b_1 and b_2 : $x(b_1) \le C \le x(b_2)$
- Sort array and use binary search: O(N log N)

ELECTRIC VEHICLE – LIMITING THE CHARGING OPTIONS

- EV cannot charge at all possible levels
 - Current situation, only few levels.
- Example: off,6A, 7A, ... , 15A
 - This gives as feasible set for x_n

$$Z_n \coloneqq \{z_n^0, z_n^1, \dots, z_n^{m_n}\}$$

So problem becomes:

$$\min_{x} f(x) = \sum_{n=1}^{N} f_n(x_n),$$

s.t. $\sum_{n=1}^{N} x_n = C_n,$
 $x_n \in Z_n \quad \forall n.$

Ν

ELECTRIC VEHICLE – DISCRETE EV CHARGING PROBLEM

$$\min_{x} f(x) = \sum_{n=1}^{N} f_n(x_n)$$

s.t. $\sum_{n=1}^{N} x_n = C_n$
 $x_n \in Z_n \quad \forall n$

Theorem

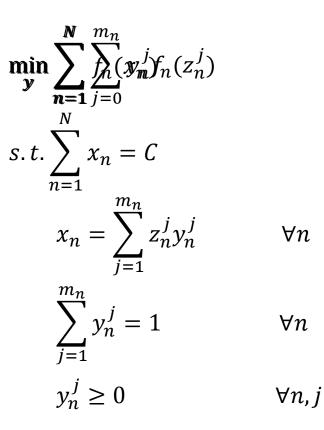
The discrete EV charging problem is NP-hard, even if all Z_n are equal

Proof based on even/odd partition

ELECTRIC VEHICLE – DISCRETE EV CHARGING PROBLEM

- Recall time intervals on minute scale
- Car switches much faster
 - Tests show car can react in ~4 sec
- Realistic case: allow convex combinations of charging levels
- Frequent switching of the charging level might harm the battery

DEVICE LEVEL PLANNING DISCRETE EV – PIECEWISE LINEAR FORMULATION



DEVICE LEVEL PLANNING DISCRETE EV – PIECEWISE LINEAR FORMULATION

- Problem is really just EV charging problem
 - With piecewise linear objective
 - Only use a piece if all other pieces with smaller slope are used
- Since f_n convex \rightarrow slopes of pieces increase
- Leads to a greedy algorithm

DEVICE LEVEL PLANNING DISCRETE EV – PIECEWISE LINEAR FORMULATION

• Let s_n^j be the slope of j-th piece:

$$s_n^j \coloneqq \frac{f_n(z_n^{j+1}) - f_n(z_n^j)}{z_n^{j+1} - z_n^j}$$

- Step 1: Sort the array $S \coloneqq \{s_1^0, s_2^0, \dots, s_N^0\}$.
- Step 2: Maximally increase charging on interval of first slope
 - Delete this slope from S
 - Insert next slope of interval in S
- Repeat Step 2 while more charging needs to be done.

DEVICE LEVEL PLANNING DISCRETE EV – PROPERTY OF THE SOLUTION

Lemma	
There is an optimal solution to the piecewise lin	ear approximation of the
discrete EV problem that has $x_n \notin Z_n$ for at most	st one <i>n</i> .

- Follows directly from the optimal greedy algorithm
- The one 'mistake' can be approximated by a convex combination of the two allowed points around it

DEVICE LEVEL PLANNING COMBINED HEAT AND POWER

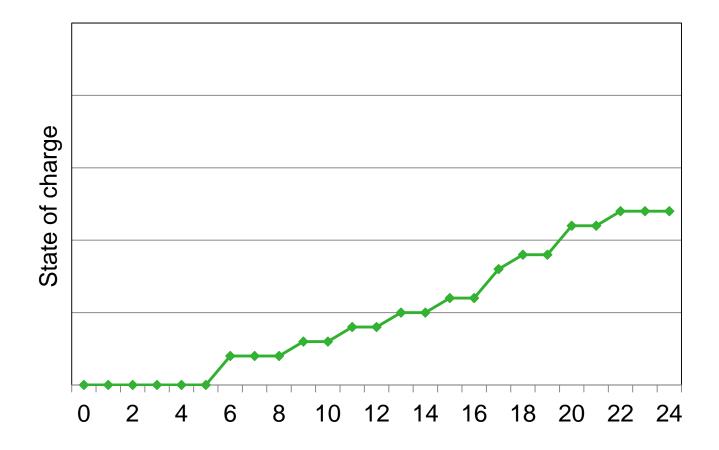
- Combined heat and power unit (CHP)
 - Converts fuel \rightarrow heat and electricity
 - Usually runs on gas!
 - produces heat demand of the house

Combined with heat storage a flexible device for electricity production

DEVICE LEVEL PLANNING CHP – DEMAND

- Demand comes in events over the day
 - E.g., morning shower
 - Heating demand
 - \rightarrow Leads to lower bounds on total production over time
- Heat storage has limited capacity
 - \rightarrow Leads to upper bounds on total production over time

CHP – STATE OF CHARGE BOUNDS



DEVICE LEVEL PLANNING CHP – STATE OF CHARGE BOUNDS

State of charge 0 2 4 6 8 10 12 14 16 18 20 22 24

DEVICE LEVEL PLANNING CHP – PROBLEM FORMULATION

$$\begin{split} \min_{x} f(x) &= \sum_{n=1}^{N} f_n(x_n), \\ s.t. \ B_n &\leq \sum_{n'=1}^{n} x_{n'} \leq C_n \qquad \forall n, \\ 0 &\leq x_n \leq X_n^{max} \qquad \forall n. \end{split}$$

- B_n and C_n are increasing sequences
- Can assume that $B_N = C_N$

CHP – OPTIMAL ALGORITHM

- Drop the cumulative bounds except for N
 - Then we have the EV problem again
- Let x be optimal for EV problem with k the interval with the worst violation
 - Surely the worst violation must be fixed

Lemma

Let *y* be optimal for the CHP problem then:

• If
$$\sum_{n=1}^{k} x_n > C_k \implies \sum_{n=1}^{k} y_n = C_k$$

• If
$$\sum_{n=1}^{k} x_n < B_k \implies \sum_{n=1}^{k} y_n = B_k$$

CHP – OPTIMAL ALGORITHM

- Allows for a recursive algorithm
- Step 1: Solve CHP problem without cumulative bounds
- Step 2: Split the problem on the largest violation of cumulative bounds
- Call algorithm on 1, ..., k and k + 1, ..., N separately
- In practise we expect few recursive calls!

CREDITS ENERGY IN TWENTE: WWW.UTWENTE.NL/ENERGY

