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Context
ICT technology is evolving very fast → Smart ICT
Decisions are generally not controlled by a single decision maker
e.g. Cloud Computing, Internet of Things involve several decision makers
Bi-level optimization involves 2 decision makers
Equivalent to Hierarchical games (e.g. Stackelberg games) → iterative
games
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Bi-level problems
Two nested optimization levels
First level is defined as "The upper level" or "The leader problem"
Second level is defined as "The lower level" or "The follower problem"
Decision variables partitioned into two sets
Decision maker can only act on their decision variables
However they can act indirectly on each other
The follower problem is parametrized by the leader decision
The feasibility of the leader problem depends on the optimality of the
follower problem
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Bi-level formulation

" min
x,y ′∈Y (x)

" F (x, y ′)

s.t. G(x, y ′) ≤ 0

Y (x) = argmin
y∈Y

f (x, y)

s.t. g (x, y) ≤ 0

x, y ≥ 0

where
F: leader objective Rn ×Rm → R

f: follower objective Rn ×Rm → R

G: leader’s constraints G : Rn ×Rm → Rp

g: follower’s constraints Rn ×Rm → Rq
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Rational reaction set
The follower ’s feasible set parametrized by x ∈ X : S(x) = {y ∈ Y : g (x, y) ≤ 0}.
The Follower’s rational decision set:
Y (x) = {y ′ ∈ Y : y ′ ∈ argmin[ f (x, y) : y ∈ S(x)]}

The Inducible Region: I R = {(x, y ′) ∈ S, y ′ ∈ Y (x)}

For a given x, the follower reacts optimally(if possible) to leader decisions →
Y (x)

For a given x, the follower may have several optimal reactions(solutions) →
|Y (x)| > 1

For a given x, the follower is indifferent to each y ′ ∈ Y (x). This is not the case
for the Leader
If|Y (x)| > 1 then two cases:

Optimistic model: " min
x,y ′∈Y (x)

" → min
x,y ′∈Y (x)

Pessimistic model: " min
x,y ′∈Y (x)

" → min
x

max
y ′∈Y (x)
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Example

Dempe et al. 2005: optimistic case

P = min
x≥0,y ′∈Y (x)

F (x, y) =−x −2y ′

s.t. 2x −3y ′ ≥−12

x + y ′ ≤ 14

Y (x) = argmin
y≥0

f (y) =−y

s.t.−3x + y ≤−3

3x + y ≤ 30
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−2x +3y = 12x + y = 14

3x + y = 30

−3x + y =−3

leader’s constraints

follower’s constraints
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minF (x, y) =−x −2y

min f (x, y) =−y

S(2)
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The blue dashed line is the parametrized follower decision set for x = 2
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S(5)

minF (x, y) =−x −2y

min f (x, y) =−y
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BThe follower is indifferent to leader’s constraints
BY (5) is not feasible for the leader
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State of the Art I

Dempe et al. 2005
Even for convex bi-level problems:

The decision set may be not convex
The decision set may be discontinued

Jeroslow et al. 1985
The linear bi-level problem has been shown NP-hard

Resolution in continuous case
The follower problem is mostly replaced by its Karush-Kuhn-Tucker conditions
The resulting single-level problem is solved using non-linear optimization
algorithms
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State of the Art II

Resolution in discrete case
No transformations
Solution of relaxed bi-level problems does not provide valid bounds
An integer solution (found using a Branch & Bound) is not necessary bi-level
feasible
Integer solutions does not generate sterile nodes



16/23

Introduction to Bi-level optimization Scheduling problems in Bi-level Optimization



17/23

Introduction to Bi-level optimization Scheduling problems in Bi-level Optimization

1 Introduction to Bi-level optimization
Definition
Properties
Resolution approaches

2 Scheduling problems in Bi-level Optimization
Bi-level scheduling theory
Practical bi-level scheduling application cases



18/23

Introduction to Bi-level optimization Scheduling problems in Bi-level Optimization

Bi-level total weighted completion time [Kis and Kovács, 2010]

M identical machines, N jobs
Each jobs has a processing time p j and two non-negative weights, w1

j and w2
j

Leader assigns jobs to machines and mimimize
∑
j

w1
j C j

Follower schedules the assigned jobs on each machine and mimimize
∑
j

w2
j C j

Decision problem is NP-complete in the strong sense
([Kis and Kovács, 2010])



19/23

Introduction to Bi-level optimization Scheduling problems in Bi-level Optimization

Bi-level order acceptance [Kis and Kovács, 2010]

1 machine, N jobs
Each jobs has a processing time p j , a deadline d j and two non-negative
weights, w1

j and w2
j

Leader assigns jobs to machines and mimimize
∑
j

w1
j R j with R j = 1 if C j > d j

Follower schedules the assigned jobs on each machine and mimimize
∑
j

w2
j C j

Decision problem is NP-complete in the strong sense
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Bi-level flow-shop problem [Karlof and Wang, 1996]

M machine, N jobs, M operators
Each operator has its own time table for each jobs on each machine
Leader assigns operators to machines to mimimize the total flow-time
Follower schedules then all jobs according to the processing time provided by
the assigned operators to minimize the makespan
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Scheduling under production uncertainties [Chu et al., 2015]

Planning and scheduling are two core decision intricately linked.

Leader −−> planning problem based on customers orders

Followers −−> scheduling problems to provide a production schedule

Multiple products can be manufactured in a single period, the production need to be
scheduled

The scheduling problem is parametrized by the production quantity obtained by the
leader

Leader is modelled as a MILP while the scheduling with uncertain processing time
reactive agent-based approach
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Bi-level Grid Scheduling [Bianco et al., 2015]

Each task has a release date and a due-date

Leader −−> External scheduler assigns tasks to grid computing sites

Followers −−> Multiple followers with own objectives

Leader wants to minimize a cost proportional to the tardiness

Followers wants to maximise the computational resource usage efficiency
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