Structural Properties of an Open Problem in Preemptive Scheduling

Bo Chen Edward Coffman Jr．Dariusz Dereniowski Wiesław Kubiak＊
＊Memorial University，St．John＇s，Canada
Aussois，April 2016

Motivation

Th. (Coffman \& Graham, '72)
$P 2\left|p r e c, p_{j}=1\right| \sum C_{j}$ is ideal and can be solved in $O\left(n^{2}\right)$ time.
Th. (Coffman, Sethuraman \& Timkovsky, '03)
$P 2 \mid$ pmtn, prec, $p_{j}=1 \mid \sum C_{j}$ is ideal and can be solved in $O\left(n^{2}\right)$ time.

Motivation

Th. (Garey \& Johnson, '76)
P2|prec, $r_{j}, p_{j}=1 \mid C_{\text {max }}$ can be solved in $O\left(n^{\log _{2} 7}\right)$ time.
Th. (Baptiste \& Timkovsky, '04)
$P 2 \mid$ prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ can be solved in $O\left(n^{9}\right)$ time.
Th. (Coffman \& Dereniowski \& Kubiak, '12)
$P 2\left|p r e c, r_{j}, p_{j}=1\right| \sum C_{j}$ is ideal and can be solved in $O\left(n^{3}\right)$ time.
Problem (Considered in this presentation)
Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ ideal?

Motivation

Th. (Garey \& Johnson, '76)
P2|prec, $r_{j}, p_{j}=1 \mid C_{\text {max }}$ can be solved in $O\left(n^{\log _{2} 7}\right)$ time.
Th. (Baptiste \& Timkovsky, '04)
P2|prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ can be solved in $O\left(n^{9}\right)$ time.
Th. (Coffman \& Dereniowski \& Kubiak, '12)
$P 2\left|p r e c, r_{j}, p_{j}=1\right| \sum C_{j}$ is ideal and can be solved in $O\left(n^{3}\right)$ time.
Problem (Considered in this presentation)
Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ ideal? No. Complexity - Open.

P2|pmtn, intree, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is not ideal

(a)

(b)

	1	2	3			4				$k+1$	$k+2$	$k+3$
a	c	f_{1}	f_{2}	\cdots	f_{k-1}	f_{k}	h					
b		g_{1}	g_{2}	\cdots	g_{k-1}	g_{k}	r					

(c)

$$
\begin{array}{cc}
f_{k-1}(k) & g_{k-1}(k) \\
f_{k}(k+1) \\
g_{k}(k+1)
\end{array}
$$

Multiple of $1 / 2,1 / 4, \ldots$ preemptions (?) - the main question

Events and chunks

For a given schedule \mathcal{P}, define a vector $\boldsymbol{e}=\left(e_{1}, \ldots, e_{q}\right)$, where $0=e_{1}<e_{2}<\cdots<e_{q}$, such that each $e_{i}, i>1$, is either:

- job start,
- job completion.

Events and chunks

For a given schedule \mathcal{P}, define a vector $\boldsymbol{e}=\left(e_{1}, \ldots, e_{q}\right)$, where $0=e_{1}<e_{2}<\cdots<e_{q}$, such that each $e_{i}, i>1$, is either:

- job start,
- job completion.

The elements of \boldsymbol{e} are called the events of \mathcal{P}.

Events and chunks

For a given schedule \mathcal{P}, define a vector $\boldsymbol{e}=\left(e_{1}, \ldots, e_{q}\right)$, where $0=e_{1}<e_{2}<\cdots<e_{q}$, such that each $e_{i}, i>1$, is either:

■ job start,

- job completion.

The elements of \boldsymbol{e} are called the events of \mathcal{P}.
The parts of \mathcal{P} executing between consecutive events are called chunks of \mathcal{P}.

How do the chunks of an optimal schedule look like?

Lemma

Let \mathcal{P} be an optimal schedule. If the i-th chunk is not empty, then:

1 there exists $a \in \mathcal{J}$ such that its execution time in the chunk equals the length of the chunk, and
2 there are at most three jobs 'present' in the chunk, and
3 if three jobs are present, then one of them completes at the end of the chunk.

Normal schedules and abnormality points

A preemptive schedule \mathcal{P} with q events is normal if:

- i-th chunk has length that is multiple of $1 / 2^{i}$,
- the total execution time of each job in the chunk is a multiple of $1 / 2^{i+1}$.

Normal schedules and abnormality points

A preemptive schedule \mathcal{P} with q events is normal if:
■ i-th chunk has length that is multiple of $1 / 2^{i}$,

- the total execution time of each job in the chunk is a multiple of $1 / 2^{i+1}$.
If a schedule \mathcal{P} with is not normal, then the minimum index $i \in\{1, \ldots, q-1\}$ such that the i-th chunk of \mathcal{P} does not satisfy the above conditions is called the abnormality point of \mathcal{P}.

How can the abnormality point (really) arise?

Given a schedule \mathcal{P}, for each $i \in\{1, \ldots, q-1\}$ define
$A_{i}(\mathcal{P}):=$ the set of jobs whose execution time in chunk i is not multiple of $1 / 2^{i+1}$.

How can the abnormality point (really) arise?

Given a schedule \mathcal{P}, for each $i \in\{1, \ldots, q-1\}$ define
$A_{i}(\mathcal{P}):=$ the set of jobs whose execution time in chunk i is not multiple of $1 / 2^{i+1}$.

Lemma

Let \mathcal{P} be a maximal schedule. If \mathcal{P} has abnormality point i, then $\left|A_{i}(\mathcal{P})\right|=2$ and three jobs are present in chunk i.

How can the abnormality point (really) arise?

Given a schedule \mathcal{P}, for each $i \in\{1, \ldots, q-1\}$ define
$A_{i}(\mathcal{P}):=$ the set of jobs whose execution time in chunk i is not multiple of $1 / 2^{i+1}$.

Lemma

Let \mathcal{P} be a maximal schedule. If \mathcal{P} has abnormality point i, then $\left|A_{i}(\mathcal{P})\right|=2$ and three jobs are present in chunk i.

Main results

The above sequence $\left(d_{1}, \ldots, d_{l}\right)$ of jobs is called an alternating chain.

1 we first prove that some alternating chain is present (i.e., one with two jobs),

Main results

The above sequence $\left(d_{1}, \ldots, d_{l}\right)$ of jobs is called an alternating chain.

1 we first prove that some alternating chain is present (i.e., one with two jobs),
2 we take an optimal schedule that satisfies certain (technical) properties and has maximal abnormality point,

Main results

The above sequence $\left(d_{1}, \ldots, d_{l}\right)$ of jobs is called an alternating chain.

1 we first prove that some alternating chain is present (i.e., one with two jobs),
2 we take an optimal schedule that satisfies certain (technical) properties and has maximal abnormality point,
3 we are able to prove that we can obtain a new schedule that also satisfies those properties, has the same abnormality point but its alternating chain has one more job.

Main results

Theorem

There exists a normal optimal schedule for $P 2 \mid p m t n$, in-tree $, r_{j}, p_{j} \mid \sum C_{i}$.

Main results

Theorem

There exists a normal optimal schedule for $P 2 \mid p m t n$, in-tree, $r_{j}, p_{j} \mid \sum C_{i}$.

Corollary

For the given set of n jobs, there exists an optimal schedule for $P 2 \mid p m t n$, in-tree, $r_{j}, p_{j} \mid \sum C_{i}$ such that each job start, preemption, resumption or completion occurs at a time point that is a multiple of $1 / 2^{2 n}$.

Lower bound

Lower bound on the power (granularity)

(a)

(b)

Lower bound on the power (granularity)

Theorem

There exists a set of n jobs \mathcal{J} such that there exists no optimal solution to $P 2 \mid p m t n$, in-tree, $r_{j}, p_{j}=1 \mid \sum C_{i}$ for \mathcal{J} in which each job start, completion and preemption occurs at a time point that is a multiple of $1 / 2^{n / 4-1}$.

Conclusions and open questions

- $P 2 \mid p m t n$, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal.

Conclusions and open questions

- P2|pmtn, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal.
- Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal?

Conclusions and open questions

- P2|pmtn, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal.
- Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal?

■ Is $P 2 \mid p m t n$, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ polynomial?

Conclusions and open questions

- P2|pmtn, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal.
- Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ is normal?

■ Is $P 2 \mid p m t n$, intrees, $r_{j}, p_{j}=1 \mid \sum C_{j}$ polynomial?
■ Is $P 2 \mid p m t n$, prec, $r_{j}, p_{j}=1 \mid \sum C_{j}$ polynomial?

Thank you

