Structural Properties of an Open Problem in Preemptive Scheduling

Bo Chen Edward Coffman Jr. Dariusz Dereniowski Wiesław Kubiak*

*Memorial University, St. John's, Canada

Aussois, April 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Th. (Coffman & Graham, '72)

 $P2|prec, p_j = 1|\sum C_j$ is ideal and can be solved in $O(n^2)$ time.

Th. (Coffman, Sethuraman & Timkovsky, '03)

 $P2|pmtn, prec, p_j = 1| \sum C_j$ is ideal and can be solved in $O(n^2)$ time.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

Motivation

Th. (Garey & Johnson, '76)

 $P2|prec, r_j, p_j = 1|C_{max}$ can be solved in $O(n^{\log_2 7})$ time.

Th. (Baptiste & Timkovsky, '04)

 $P2|prec, r_j, p_j = 1| \sum C_j$ can be solved in $O(n^9)$ time.

Th. (Coffman & Dereniowski & Kubiak, '12)

 $P2|prec, r_j, p_j = 1|\sum C_j$ is ideal and can be solved in $O(n^3)$ time.

Problem (Considered in this presentation)

Is P2|pmtn, prec, r_j , $p_j = 1 | \sum C_j$ ideal?

Th. (Garey & Johnson, '76)

 $P2|prec, r_j, p_j = 1|C_{max}$ can be solved in $O(n^{\log_2 7})$ time.

Th. (Baptiste & Timkovsky, '04)

 $P2|prec, r_j, p_j = 1| \sum C_j$ can be solved in $O(n^9)$ time.

Th. (Coffman & Dereniowski & Kubiak, '12)

 $P2|prec, r_j, p_j = 1|\sum C_j$ is ideal and can be solved in $O(n^3)$ time.

Problem (Considered in this presentation)

Is P2|pmtn, prec, r_j , $p_j = 1 | \sum C_j$ ideal? No. Complexity - Open.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$P2|pmtn, intree, r_j, p_j = 1| \sum C_j$ is not ideal

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiple of 1/2, 1/4, ... preemptions (?) - the main question

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For a given schedule \mathcal{P} , define a vector $\boldsymbol{e} = (e_1, \ldots, e_q)$, where $0 = e_1 < e_2 < \cdots < e_q$, such that each e_i , i > 1, is either:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- job start,
- job completion.

For a given schedule \mathcal{P} , define a vector $\boldsymbol{e} = (e_1, \ldots, e_q)$, where $0 = e_1 < e_2 < \cdots < e_q$, such that each e_i , i > 1, is either:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- job start,
- job completion.

The elements of e are called the *events* of \mathcal{P} .

For a given schedule \mathcal{P} , define a vector $\boldsymbol{e} = (e_1, \ldots, e_q)$, where $0 = e_1 < e_2 < \cdots < e_q$, such that each e_i , i > 1, is either:

- job start,
- job completion.

The elements of \boldsymbol{e} are called the *events* of \mathcal{P} .

The parts of \mathcal{P} executing between consecutive events are called *chunks* of \mathcal{P} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How do the chunks of an optimal schedule look like?

Lemma

Let \mathcal{P} be an optimal schedule. If the *i*-th chunk is not empty, then:

- **1** there exists $a \in \mathcal{J}$ such that its execution time in the chunk equals the length of the chunk, and
- 2 there are at most three jobs 'present' in the chunk, and
- 3 if three jobs are present, then one of them completes at the end of the chunk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A preemptive schedule \mathcal{P} with q events is *normal* if:

- *i*-th chunk has length that is multiple of $1/2^i$,
- the total execution time of each job in the chunk is a multiple of 1/2ⁱ⁺¹.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A preemptive schedule \mathcal{P} with q events is *normal* if:
 - *i*-th chunk has length that is multiple of $1/2^i$,
 - the total execution time of each job in the chunk is a multiple of 1/2ⁱ⁺¹.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If a schedule \mathcal{P} with is not normal, then the minimum index $i \in \{1, \ldots, q-1\}$ such that the *i*-th chunk of \mathcal{P} does not satisfy the above conditions is called the *abnormality point* of \mathcal{P} .

How can the abnormality point (really) arise?

Given a schedule \mathcal{P} , for each $i \in \{1, \ldots, q-1\}$ define

 $A_i(\mathcal{P})$:= the set of jobs whose execution time in chunk *i* is not multiple of $1/2^{i+1}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

How can the abnormality point (really) arise?

Given a schedule \mathcal{P} , for each $i \in \{1, \ldots, q-1\}$ define

 $A_i(\mathcal{P})$:= the set of jobs whose execution time in chunk *i* is not multiple of $1/2^{i+1}$.

Lemma

Let \mathcal{P} be a maximal schedule. If \mathcal{P} has abnormality point *i*, then $|A_i(\mathcal{P})| = 2$ and three jobs are present in chunk *i*.

How can the abnormality point (really) arise?

Given a schedule \mathcal{P} , for each $i \in \{1, \ldots, q-1\}$ define

 $A_i(\mathcal{P})$:= the set of jobs whose execution time in chunk *i* is not multiple of $1/2^{i+1}$.

Lemma

Let \mathcal{P} be a maximal schedule. If \mathcal{P} has abnormality point *i*, then $|A_i(\mathcal{P})| = 2$ and three jobs are present in chunk *i*.

The above sequence (d_1, \ldots, d_l) of jobs is called an *alternating chain*.

 we first prove that some alternating chain is present (i.e., one with two jobs),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The above sequence (d_1, \ldots, d_l) of jobs is called an *alternating chain*.

- we first prove that some alternating chain is present (i.e., one with two jobs),
- 2 we take an optimal schedule that satisfies certain (technical) properties and has maximal abnormality point,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The above sequence (d_1, \ldots, d_l) of jobs is called an *alternating chain*.

- we first prove that some alternating chain is present (i.e., one with two jobs),
- 2 we take an optimal schedule that satisfies certain (technical) properties and has maximal abnormality point,
- 3 we are able to prove that we can obtain a new schedule that also satisfies those properties, has the same abnormality point but its alternating chain has one more job.

Main results

Theorem

There exists a normal optimal schedule for $P2|pmtn, in-tree, r_j, p_j| \sum C_i$.

Main results

Theorem

There exists a normal optimal schedule for $P2|pmtn, in-tree, r_j, p_j| \sum C_i$.

Corollary

For the given set of n jobs, there exists an optimal schedule for P2|pmtn, in-tree, $r_j, p_j| \sum C_i$ such that each job start, preemption, resumption or completion occurs at a time point that is a multiple of $1/2^{2n}$.

Lower bound

Lower bound on the power (granularity)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lower bound on the power (granularity)

Theorem

There exists a set of n jobs \mathcal{J} such that there exists no optimal solution to P2|pmtn, in-tree, $r_j, p_j = 1|\sum C_i$ for \mathcal{J} in which each job start, completion and preemption occurs at a time point that is a multiple of $1/2^{n/4-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions and open questions

• $P2|pmtn, intrees, r_j, p_j = 1| \sum C_j$ is normal.

Conclusions and open questions

P2|pmtn, intrees, r_j, p_j = 1| ∑ C_j is normal.
Is P2|pmtn, prec, r_i, p_j = 1| ∑ C_j is normal?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $P2|pmtn, intrees, r_j, p_j = 1| \sum C_j$ is normal.
- Is $P2|pmtn, prec, r_j, p_j = 1| \sum C_j$ is normal?
- Is $P2|pmtn, intrees, r_j, p_j = 1| \sum C_j$ polynomial?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $P2|pmtn, intrees, r_j, p_j = 1| \sum C_j$ is normal.
- Is $P2|pmtn, prec, r_j, p_j = 1| \sum C_j$ is normal?
- Is $P2|pmtn, intrees, r_j, p_j = 1| \sum C_j$ polynomial?

• Is $P2|pmtn, prec, r_j, p_j = 1| \sum C_j$ polynomial?

Thank you