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Motivation

Th. (Coffman & Graham, ’72)

P2|prec , pj = 1|
∑

Cj is ideal and can be solved in O(n2) time.
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∑
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time.
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∑
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Problem (Considered in this presentation)
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No. Complexity - Open.
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P2|pmtn, intree, rj , pj = 1|∑Cj is not ideal
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Multiple of 1/2, 1/4, ... preemptions (?) - the main
question
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Events and chunks

For a given schedule P, define a vector e = (e1, . . . , eq), where
0 = e1 < e2 < · · · < eq, such that each ei , i > 1, is either:

job start,

job completion.

The elements of e are called the events of P.
The parts of P executing between consecutive events are called
chunks of P.
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How do the chunks of an optimal schedule look like?

Lemma

Let P be an optimal schedule. If the i-th chunk is not empty, then:

1 there exists a ∈ J such that its execution time in the chunk
equals the length of the chunk, and

2 there are at most three jobs ‘present’ in the chunk, and

3 if three jobs are present, then one of them completes at the
end of the chunk.



Normal schedules and abnormality points

A preemptive schedule P with q events is normal if:

i-th chunk has length that is multiple of 1/2i ,

the total execution time of each job in the chunk is a multiple
of 1/2i+1.

If a schedule P with is not normal, then the minimum index
i ∈ {1, . . . , q − 1} such that the i-th chunk of P does not satisfy
the above conditions is called the abnormality point of P.
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How can the abnormality point (really) arise?

Given a schedule P, for each i ∈ {1, . . . , q − 1} define

Ai (P) := the set of jobs whose execution time in chunk i

is not multiple of 1/2i+1.

Lemma

Let P be a maximal schedule. If P has abnormality point i , then
|Ai (P)| = 2 and three jobs are present in chunk i .
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Main results

The above sequence (d1, . . . , dl) of jobs is called an alternating
chain.

1 we first prove that some alternating chain is present (i.e., one
with two jobs),

2 we take an optimal schedule that satisfies certain (technical)
properties and has maximal abnormality point,

3 we are able to prove that we can obtain a new schedule that
also satisfies those properties, has the same abnormality point
but its alternating chain has one more job.
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Main results

Theorem

There exists a normal optimal schedule for
P2|pmtn, in-tree, rj , pj |

∑
Ci .

Corollary

For the given set of n jobs, there exists an optimal schedule for
P2|pmtn, in-tree, rj , pj |

∑
Ci such that each job start, preemption,

resumption or completion occurs at a time point that is a multiple
of 1/22n.
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Lower bound
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Lower bound on the power (granularity)
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Lower bound on the power (granularity)

Theorem

There exists a set of n jobs J such that there exists no optimal
solution to P2|pmtn, in-tree, rj , pj = 1|

∑
Ci for J in which each

job start, completion and preemption occurs at a time point that is
a multiple of 1/2n/4−1.



Conclusions and open questions
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