Flow Shop for Dual CPUs in Dynamic Voltage Scaling

Vincent Chau, Ken C.K. Fong, Minming Li and Kai Wang

Department of Computer Science, City University of Hong Kong

March 2016

Minming Li

Outline

- 2 Flowshop on *m* machines
 - Discrete Speed (fixed order)
 - Continuous Speed (arbitrary order)

Sense-And-Aggregate Model

4 Conclusion

Outline

Flowshop on *m* machines
Discrete Speed (fixed order)

• Continuous Speed (arbitrary order)

Sense-And-Aggregate Model

4 Conclusion

Models

- We are given a set of *n* jobs and *m* machines:
 - each job j has a processing requirement $p_{i,j}$ on machine i
- Flowshop on 2 machines
 - a job *j* can start on machine 2 only when it is completed on machine 1

Models

- We are given a set of *n* jobs and *m* machines:
 - each job j has a processing requirement $p_{i,j}$ on machine i
- Flowshop on 2 machines
 - a job *j* can start on machine 2 only when it is completed on machine 1
- Speed-Scaling setting
 - Cost is $\int s(t)^{\alpha} dt$ with $\alpha > 1$

Models

- We are given a set of *n* jobs and *m* machines:
 - each job j has a processing requirement $p_{i,j}$ on machine i
- Flowshop on 2 machines
 - a job *j* can start on machine 2 only when it is completed on machine 1
- Speed-Scaling setting
 - Cost is $\int s(t)^{\alpha} dt$ with $\alpha > 1$

Example

When order of jobs is given, there exists a $O(n^3)$ algorithm Z. Mu, M. Li, Journal of Combinatorial Optimization, 2015 $F = \frac{\left(p_{1,1} + \sqrt[\alpha]{(p_{1,2} + p_{1,3})^{\alpha} + (p_{2,1} + p_{2,2})^{\alpha}} + \sqrt[\alpha]{p_{1,4}^{\alpha} + p_{2,3}^{\alpha} + p_{2,4}\right)^{\alpha}}{\sqrt[\alpha]{p_{1,4}^{\alpha} + p_{2,3}^{\alpha} + p_{2,4}}}$ speed 2 time 0 D City University critical interval of Hong Kong

Flow Shop for Dual CPUs in Dynamic Voltage Scaling March 2016

Our contributions

- Flowshop on *m* machines
 - Fixed order, Discrete speeds, a Linear Program Formulation
 - Arbitrary order, Continuous speeds, an approximation algorithm
- Sense-And-Aggregate Model

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Outline

2 Flowshop on *m* machines

- Discrete Speed (fixed order)
- Continuous Speed (arbitrary order)

3 Sense-And-Aggregate Model

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Continuous to Discrete

- Jobs order is given with processing requirement of 10
- Set of speeds $S = \{1, 2\}$

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Continuous to Discrete

- Jobs order is given with processing requirement of 10
- Set of speeds $S = \{1, 2\}$

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Continuous to Discrete

- Jobs order is given with processing requirement of 10
- Set of speeds $S = \{1, 2\}$

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

A Linear Program

Let $x_{i,j,v}$ be the workload done for job j on machine i at speed v. Let $s_{i,j}$ (resp. $c_{i,j}$) be the starting time (resp. completion time) of job j on machine i.

 $\min \quad \sum_{v \in S} \sum_{i} \sum_{j} v^{\alpha - 1} x_{i,j,v}$

 $c_m = < D$

s.t. $\sum_{v \in S} x_{i,j,v} = p_{i,j}$ $\forall i,j$ all jobs must be scheduled

$$s_{i,j} + \sum_{v \in S} rac{x_{i,j,v}}{v} = c_{i,j}$$
 $orall i,j$ Processing time

$$c_{i,j} \leq s_{i,j+1}$$
 $\forall i,j$ Precedence const. between jobs
 $c_{i,j} \leq s_{i+1,j}$ $\forall i,j$ between machines
 $x_{i,j,v}, s_{i,j}, c_{i,j} \geq 0$ $\forall i,j,v$ $\exists i,j \in \mathbb{R}^{3}$

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

A Linear Time Approximation Algorithm

• Recall that for fixed order, a polynomial time algorithm exists

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

A Linear Time Approximation Algorithm

- Recall that for fixed order, a polynomial time algorithm exists
- We schedule jobs at speed $\frac{\sum_{i,j} p_{i,j}}{D}$ in any order on each machine

Minming Li

Flow Shop for Dual CPUs in Dynamic Voltage Scaling March 2016

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Approximation algorithm

Theorem

This algorithm is a $m^{\alpha-1}$ -approximation

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Approximation algorithm

Theorem

This algorithm is a $m^{\alpha-1}$ -approximation

Proof

Let
$$V_i = \sum_j p_{i,j} \forall i$$

$$\frac{ALG}{LB} = \frac{(\sum_i V_i)^{\alpha} D^{1-\alpha}}{m \left(\sum_i \frac{V_i}{m}\right)^{\alpha} D^{1-\alpha}} = \frac{(\sum_i V_i)^{\alpha}}{m \left(\sum_i \frac{V_i}{m}\right)^{\alpha}}$$

$$= \frac{(\sum_i V_i)^{\alpha}}{m (\sum_i V_i)^{\alpha} \left(\frac{1}{m}\right)^{\alpha}} = m^{\alpha-1}$$

Discrete Speed (fixed order) Continuous Speed (arbitrary order)

Approximation algorithm

Theorem

This algorithm is a
$$m^{lpha-1}$$
-approximation

Proof

Let
$$V_i = \sum_j p_{i,j} \forall i$$

$$\frac{ALG}{LB} = \frac{(\sum_i V_i)^{\alpha} D^{1-\alpha}}{m \left(\sum_i \frac{V_i}{m}\right)^{\alpha} D^{1-\alpha}} = \frac{(\sum_i V_i)^{\alpha}}{m \left(\sum_i \frac{V_i}{m}\right)^{\alpha}}$$

$$= \frac{(\sum_i V_i)^{\alpha}}{m (\sum_i V_i)^{\alpha} \left(\frac{1}{m}\right)^{\alpha}} = m^{\alpha-1}$$

Note that if we fix an arbitrary order and compute the minimum energy consumption, the approximation cannot be larger than $m^{\alpha-1}$ but takes $O(n^3)$ time.

Outline

Flowshop on *m* machines
Discrete Speed (fixed order)

• Continuous Speed (arbitrary order)

3 Sense-And-Aggregate Model

4 Conclusion

Sense-And-Aggregate Model

Rules:

- Sensor collects one unit of data at each time
- Computation can decide to process now or wait for more data
 - Outputs one unit of data for each aggregation
- Common deadline D

Observations

- The more we wait, the less workload there is on the computation machine
- Decide to compute earlier allows to speed down the processing, and potentially the energy consumption

Workload-Consideration-Function

- The computation depends on the nature of the problem
- For example: we want the maximum/minimum value: f(x) = x 1

Workload-Consideration-Function f(x) = x

- Guess the critical intervals: the workload of each machine
- Guess when to start each computation/aggregation

Flow Shop for Dual CPUs in Dynamic Voltage Scaling March 2016

Workload-Consideration-Function f(x) = x

- Guess the critical intervals: the workload of each machine
- Guess when to start each computation/aggregation

Definition

Let F(s, w, g) be the minimum cost of the jobs s + 1, ..., n with a workload of w on the second machine and a pending workload of g on the first machine (before job s + 1).

Definition

Let F(s, w, g) be the minimum cost of the jobs s + 1, ..., n with a workload of w on the second machine and a pending workload of g on the first machine (before job s + 1).

Dynamic Programming

Once the values i and B are fixed, we need to compute the minimum pending workload in this critical interval.

Minming Li

Flow Shop for Dual CPUs in Dynamic Voltage Scaling

Objective function

The cost of the optimal schedule is

$$\min_{\substack{0 \le w \le W \\ 1 \le j \le n}} \frac{\left(F(j+1,w,j)+j\right)^{\alpha}}{D}$$

Note that when workloads are fixed during the computation, the time of critical intervals are also fixed.

Minming Li

Flow Shop for Dual CPUs in Dynamic Voltage Scaling

Guessing the minimum pending workload

Definition

A(i, g, B, e) is the maximum workload on the first machine that can be aggregated such that:

- there is at most a workload of *i* on the first machine
- there is at most a workload of B on the second machine
- there is a pending workload of g (already scheduled on the first machine on a previous critical interval)
- the second machine has already scheduled a workload of e

The remaining workload is the pending workload:

$$k = (i - s) - A(i, g, B, B)$$

Dynamic Programming (2)

In this critical interval, we ensure precedence constraints. $\frac{A(i,g,B,e')+(e-e'-1)}{i}$ should be before $\frac{e'}{B}$ (from the beginning of the interval)

To sum up

- When f(x) = x, then $B \le w \le 2n$ which lead to an overall time complexity of $O(n^5)$.
- When f(x) = x − 1, a greedy algorithm in linear time can solve it.
- Other workload-consideration-function f(x)?
 - Can solve any function f(x) in time $O(n^3 W^2)$
 - where $W \leq n(\max_{0 \leq x \leq n} f(x) + 1)$
 - Overall complexity : $O(n^5(\max f(x))^2)$

Outline

Plowshop on *m* machines
Discrete Speed (fixed order)

• Continuous Speed (arbitrary order)

3 Sense-And-Aggregate Model

Conclusion and Directions

• Flowshop on *m* machines

- Fixed order, Discrete speeds, a Linear Program Formulation
 - A more efficient algorithm?
- Arbitrary order, Continuous speeds, an approximation algorithm
 - Improve the approximation ratio
 - open : Is the 2-machine-flowshop polynomial when order is not fixed?
- Sense-And-Aggregate Model
 - A more general workload-consideration-function
 - Approximation algorithm
 - Online setting

Thanks for your attention!

Minming Li

Flow Shop for Dual CPUs in Dynamic Voltage Scaling

March 2016 25 / 25