
1/ 29

Data Locality in MapReduce

Loris Marchal1 Olivier Beaumont2

1: CNRS and ENS Lyon, France.

2: INRIA Bordeaux Sud-Ouest, France.

New Challenges in Scheduling Theory — March 2016



2/ 29

MapReduce basics

I Well known framework for data-processing on parallel clusters

I Popularized by Google, open source implementation: Apache Hadoop

I Breaks computation into small tasks, distributed on the processors

I Dynamic scheduler: handle failures and processor heterogeneity

I Centralized scheduler launches all tasks
I Users only have to write code for two functions:

I Map: filters the data, produces intermediate results
I Reduce: summarizes the information

I Large data files split into chunks that are scattered on the platform
(e.g. using HDFS for Hadoop)

I Goal: process computation near the data, avoid large data transfers



3/ 29

MapReduce example

Textbook example: WordCount (count #occurrences of words
in a text)

1. Text split in chunks scattered on local disks

2. Map: compute #occurrences of words in each chunk,
produces results as <word,#occurrences> pairs

3. Sort and Shuffle: gather all pairs with same word on a single
processor

4. Reduce: merges results for single word (sum #occurrences)



4/ 29

Other usages of MapReduce

I Several phases of Map and Reduce (tightly coupled
applications)

I Only Map phase (independent tasks, divisible load scheduling)



5/ 29

MapReduce locality

Potential data transfer sources:
I Sort and Shuffle: data exchange between all processors

I Depends on the applications (size and number of <key,value> pairs)

I Map task allocation: when a Map slot is available on a processor
I choose a local chunk if any
I otherwise choose any unprocessed chunk and transfer data

Replication during initial data distributions:

I To improve (data locality) and fault tolerance

I Optional, basic setting: 3 replicas

I first, chunk placed on a disk
I one copy sent to another disk of the same rack (local communication)
I one copy sent to another rack



6/ 29

Objective of this study

Analyze the data locality of the Map phase:

1. estimate the volume of communication

2. estimate the load imbalance without communication

Using a simple model, to provide good estimates and measure the
influence of key parameters:

I Replication factor

I Number of tasks and processors

I Task heterogeneity (to come)

Disclaimer: work in progress
Comments/contributions welcome!



7/ 29

Outline

Introduction & motivation

Related work

Volume of communication of the Map phase

Load imbalance without communication

Conclusion



8/ 29

Outline

Introduction & motivation

Related work

Volume of communication of the Map phase

Load imbalance without communication

Conclusion



9/ 29

Related work 1/2

MapReduce locality:

I Improvement Shuffle phase

I Few studies on the locality for the Map phase (mostly
experimental)

Balls-into-bins:
I Random allocation of n balls in p bins:

I For n = p, maximum load of log n/ log log n
I Estimation of maximum load with high probability for n ≥ p

[Raab & Steeger 2013]

I Choosing the least loaded among r candidates improves a lot
I “Power of two choices” [Mitzenmacher 2001]
I Maximum load n/p + O(log log p) [Berenbrick et al. 2000]

I Adaptation for weighted balls [Berenbrick et al. 2008]



9/ 29

Related work 1/2

MapReduce locality:

I Improvement Shuffle phase

I Few studies on the locality for the Map phase (mostly
experimental)

Balls-into-bins:
I Random allocation of n balls in p bins:

I For n = p, maximum load of log n/ log log n
I Estimation of maximum load with high probability for n ≥ p

[Raab & Steeger 2013]

I Choosing the least loaded among r candidates improves a lot
I “Power of two choices” [Mitzenmacher 2001]
I Maximum load n/p + O(log log p) [Berenbrick et al. 2000]

I Adaptation for weighted balls [Berenbrick et al. 2008]



10/ 29

Related work 2/2

Work-stealing:

I Independent tasks or tasks with precedence

I Steal part of a victim’s task queue in time 1

I Distributed process (steal operations may fail)

I Bound on makespan using potential function [Tchiboukdjian,
Gast & Trystram 2012]



11/ 29

Outline

Introduction & motivation

Related work

Volume of communication of the Map phase

Load imbalance without communication

Conclusion



12/ 29

Problem statement – MapReduce model

Data distribution:

I p processors, each with its own data storage (disk)

I n tasks (or chunks)

I r copies of each chunk distributed uniformly at random

Allocation strategy:
I whenever a processor is idle:

I allocate a local task is possible
I otherwise, allocate a random task, copy the data chunk
I invalidate all other replicas of the chosen chunk

Cost model:

I Uniform chunk size (parameter of MapReduce)

I Uniform task durations

Question:

I Total volume of communication (in chunk number)



12/ 29

Problem statement – MapReduce model

Data distribution:

I p processors, each with its own data storage (disk)

I n tasks (or chunks)

I r copies of each chunk distributed uniformly at random

Allocation strategy:
I whenever a processor is idle:

I allocate a local task is possible
I otherwise, allocate a random task, copy the data chunk
I invalidate all other replicas of the chosen chunk

Cost model:

I Uniform chunk size (parameter of MapReduce)

I Uniform task durations

Question:

I Total volume of communication (in chunk number)



12/ 29

Problem statement – MapReduce model

Data distribution:

I p processors, each with its own data storage (disk)

I n tasks (or chunks)

I r copies of each chunk distributed uniformly at random

Allocation strategy:
I whenever a processor is idle:

I allocate a local task is possible
I otherwise, allocate a random task, copy the data chunk
I invalidate all other replicas of the chosen chunk

Cost model:

I Uniform chunk size (parameter of MapReduce)

I Uniform task durations

Question:

I Total volume of communication (in chunk number)



12/ 29

Problem statement – MapReduce model

Data distribution:

I p processors, each with its own data storage (disk)

I n tasks (or chunks)

I r copies of each chunk distributed uniformly at random

Allocation strategy:
I whenever a processor is idle:

I allocate a local task is possible
I otherwise, allocate a random task, copy the data chunk
I invalidate all other replicas of the chosen chunk

Cost model:

I Uniform chunk size (parameter of MapReduce)

I Uniform task durations

Question:

I Total volume of communication (in chunk number)



13/ 29

Simple solution

I Consider the system after k chunks have been allocated

I A processor i requests a new task

I Assumption: the remaining r(n− k) replicas are uniformly distributed

I Probability that none of them reach i :

pk =

(
1− 1

p

)r(n−k)

= 1− r(n − k)

p
+o

(
1

p

)
= e−r(n−k)/p +o

(
1

p

)
I Fraction of non-local chunks:

f =
1

n

∑
k

pk =
p

rn
(1− e−rn/p)



14/ 29

Simple solution - simulations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6

fr
ac

ti
on

of
n

on
lo

ca
l

ta
sk

s

replication factor

p=1000 processors, m=10.000 tasks

MapReduce simulations
1-f

I Largely underestimates non-local tasks without replication (r = 1)

I Average accuracy with replication (r > 1)



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

initial distribution (10 chunks/procs on average)

Non uniform distribution after some time /



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

after 200 steps

Non uniform distribution after some time /



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

after 400 steps

Non uniform distribution after some time /



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

after 600 steps

Non uniform distribution after some time /



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

after 800 steps

Non uniform distribution after some time /



15/ 29

Simple solution - questioning the assumption

Remaining chunks without replication:
(100 processors, 1000 tasks)

after 800 steps

Non uniform distribution after some time /



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

initial distribution (30 chunks/procs on average)

Uniform distribution for a large part of the execution?



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

after 200 steps

Uniform distribution for a large part of the execution?



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

after 400 steps

Uniform distribution for a large part of the execution?



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

after 600 steps

Uniform distribution for a large part of the execution?



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

after 800 steps

Uniform distribution for a large part of the execution?



16/ 29

Simple solution - questioning the assumption

Remaining chunks with replication=3:
(100 processors, 1000 tasks)

after 800 steps

Uniform distribution for a large part of the execution?



17/ 29

Simple solution - questioning the assumption

Assumption: after k steps, the remaining r(n − k) replicas are
uniformly distributed

I χ2 test to check if the distribution is uniform

I Fraction of the execution with a uniform distribution:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

fr
ac

ti
on

of
th

e
ex

ec
u

ti
on

w
/u

n
if

.
d

is
t.

replication factor

I For r = 1: non-uniform distribution for most of the execution

I For r > 1: uniform distribution in a majority of cases



18/ 29

Lower bound on communications without replication
I Consider n balls placed in p bins

(initial distribution with r = 1)
I A processor with k < n/p chunks will have to

receive at least k − n/p chunks
I It may need more chunks if some of its chunks

are used by other starving processors
I Assume that we steal chunks only from

overloaded processors

I Let Nk be the number of processors with exactly k chunks:

Nk = p ×
(
n

k

)
(1/p)k(1− 1/p)n−k

= e−n/p(n/p)k/k! when k � n, p

I Then, the communication volume is given by:

V =
∑

k<n/p

(n/p − k)Nk = pe−n/p (n/p)n/p+1

(n/p)!
≈
√

np

2π



18/ 29

Lower bound on communications without replication
I Consider n balls placed in p bins

(initial distribution with r = 1)
I A processor with k < n/p chunks will have to

receive at least k − n/p chunks
I It may need more chunks if some of its chunks

are used by other starving processors
I Assume that we steal chunks only from

overloaded processors

I Let Nk be the number of processors with exactly k chunks:

Nk = p ×
(
n

k

)
(1/p)k(1− 1/p)n−k

= e−n/p(n/p)k/k! when k � n, p

I Then, the communication volume is given by:

V =
∑

k<n/p

(n/p − k)Nk = pe−n/p (n/p)n/p+1

(n/p)!
≈
√

np

2π



18/ 29

Lower bound on communications without replication
I Consider n balls placed in p bins

(initial distribution with r = 1)
I A processor with k < n/p chunks will have to

receive at least k − n/p chunks
I It may need more chunks if some of its chunks

are used by other starving processors
I Assume that we steal chunks only from

overloaded processors

I Let Nk be the number of processors with exactly k chunks:

Nk = p ×
(
n

k

)
(1/p)k(1− 1/p)n−k

= e−n/p(n/p)k/k! when k � n, p

I Then, the communication volume is given by:

V =
∑

k<n/p

(n/p − k)Nk = pe−n/p (n/p)n/p+1

(n/p)!
≈
√

np

2π



18/ 29

Lower bound on communications without replication
I Consider n balls placed in p bins

(initial distribution with r = 1)
I A processor with k < n/p chunks will have to

receive at least k − n/p chunks
I It may need more chunks if some of its chunks

are used by other starving processors
I Assume that we steal chunks only from

overloaded processors

I Let Nk be the number of processors with exactly k chunks:

Nk = p ×
(
n

k

)
(1/p)k(1− 1/p)n−k

= e−n/p(n/p)k/k! when k � n, p

I Then, the communication volume is given by:

V =
∑

k<n/p

(n/p − k)Nk = pe−n/p (n/p)n/p+1

(n/p)!
≈
√

np

2π



19/ 29

Lower bound without replication – simulations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

fr
ac

ti
on

of
n

on
lo

ca
l

ta
sk

s

nb of tasks

mapreduce - steal random
mapreduce - steal most loaded

lower bound



20/ 29

Outline

Introduction & motivation

Related work

Volume of communication of the Map phase

Load imbalance without communication

Conclusion



21/ 29

Estimate load imbalance without communication

I Previous section: estimate communication done by
MapReduce to mitigate load imbalance

I But load imbalance might be more desirable that large data
exchange

I Objective: estimate the makespan without communication

Model:

I Similar data distribution (n chunks on p processors, r replicas
of each chunk)

I Allocation mechanism:
I When a processor is idle, allocate a task on local chunk (if any)
I Invalidate other replicas of the chosen chunk

I Uniform or slightly heterogeneous task durations (wi ≤
∑

wi

n log n ),
unknown beforehand



22/ 29

Makespan without replication

I Without replication: each chunk is on a single
processor

I Processor execution time = sum of chunk sizes

I Similar to the maximum load of a bin in
balls-in-bins:

I With identical tasks, when n/polylog(n) ≤ p ≤ n log n:

M ∼ log p

log
(
p log p

n

) w .h.p.

I For other cases, see [Raab & Steeger 2013], [Berenbrick 2008]



23/ 29

Makespan with replication – intuition

We build an analogy between:

I Modified MapReduce with replication r
I Balls-In-Bins distribution with r choices:

I For each ball, select r bins at random
I Allocate ball to the least loaded bin among them

In the following:

I Slightly different starting times of processors: ti
I Initial load of bins i : ti (same tie break at time 0)

I Set of random choices: Ci = {i1, . . . , ir} used by both
processes



24/ 29

Makespan with replication – analogy

Modified MapReduce:

I For each task:
Place a copy of task Ti on processors with index in
Ci = {i1, . . . , ir}

I When a processor k becomes idle:
Execute the available tasks with smaller index (if any)

NB: allocation with replication, load-balancing at runtime

Balls-In-Bins with multiple choices:

I For each ball: Place ball i in the least loaded bin with index in
Ci = {i1, . . . , ir}

NB: load-balancing during the allocation

Theorem.

The makespan of Modified MapReduce is equal to the maximum
load of Balls-In-Bins with multiple choice



24/ 29

Makespan with replication – analogy

Modified MapReduce:

I For each task:
Place a copy of task Ti on processors with index in
Ci = {i1, . . . , ir}

I When a processor k becomes idle:
Execute the available tasks with smaller index (if any)

NB: allocation with replication, load-balancing at runtime

Balls-In-Bins with multiple choices:

I For each ball: Place ball i in the least loaded bin with index in
Ci = {i1, . . . , ir}

NB: load-balancing during the allocation

Theorem.

The makespan of Modified MapReduce is equal to the maximum
load of Balls-In-Bins with multiple choice



24/ 29

Makespan with replication – analogy

Modified MapReduce:

I For each task:
Place a copy of task Ti on processors with index in
Ci = {i1, . . . , ir}

I When a processor k becomes idle:
Execute the available tasks with smaller index (if any)

NB: allocation with replication, load-balancing at runtime

Balls-In-Bins with multiple choices:

I For each ball: Place ball i in the least loaded bin with index in
Ci = {i1, . . . , ir}

NB: load-balancing during the allocation

Theorem.

The makespan of Modified MapReduce is equal to the maximum
load of Balls-In-Bins with multiple choice



25/ 29

Makespan with replication – proof

Lemma.

Let proc(i) be the processor executing task i and bin(i) the bin
containing ball i , then proc(i) = bin(i).

Proof by induction:

I First ball put on bin k ∈ C1 with smallest tk , same for first task
I Consider task/ball i :

I When Ti starts, only tasks with smaller indexes already processed by
processors of Ci

I Completion time of such a processor k before starting Ti :

Ck =
∑

j<i,proc(j)=k

size(j))

I Ball i considered after balls 1, . . . , i − 1, load of bin k at that time:

Lk =
∑

j<i,bin(j)=k

size(i)

I Ball i put in bin k ∈ Ci with smallest Lk
I By induction, Ck = Lk



26/ 29

Makespan with replication – results

Maximum load using multiple choice (r ≥ 2) at most:

n

p
+

log log n

log r
+ Θ(1) w.h.p. [Berenbrick et al. 2000]

Simulations with 200 processors and 400 (identical) tasks:

5.0

7.5

10.0

1 2 3 4 5
replication factor

M
ak

es
p

an Method

MapReduce simulations

balls in bins formulae



27/ 29

Outline

Introduction & motivation

Related work

Volume of communication of the Map phase

Load imbalance without communication

Conclusion



28/ 29

Conclusion

I Data locality analysis of the Map phase of MapReduce

I Task allocation mechanism with initial data placement:
very simple and general

I Volume of communication:

I Simple formula accurate for r ≥ 2 (missing formal proof)
I Lower bound for r = 1

= exact volume for a variant of MapReduce (steal the most loaded)

I Load imbalance without communication:

I Makespan = maximum load for multiple-choice balls-in-bins

I Key parameter: replication (both for comm. and makespan)

I Analogy: replication vs. “power of 2 choices” for balls-in-bins

I NB: cost of replication: large communication volume prior to
the computation (best-effort, possibly for many computations)



29/ 29

Perspectives

Extensions: Better estimate the communication volume with
replication:

I Use analogy with balls-into-bins with r choices
(at most 2p holes [Berenbrick et al. 2000])?

I Use potential function (cf. [Tchiboukdjian et al. 2012])?

I Heterogeneous task durations

Long-term perspectives:

I More complex data dependences (2D, tasks sharing files)


	Introduction & motivation
	Related work
	Volume of communication of the Map phase
	Load imbalance without communication
	Conclusion

