
Minimizing rental cost for multiple recipe applications in
the Cloud

F. Hana, L. Marchal, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo and H. Sabbah

LIP-ENS Lyon – FEMTO-ST institute - UFC/ENSMM Besançon

Aussois - March 29th, 2016

Outline

1. Introduction and motivation

2. Algorithmic solutions

3. Heuristics for the general case

4. Experiments

5. Conclusion

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 2 / 19

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG based streaming application

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 3 / 19

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG based streaming application

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 3 / 19

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG based streaming application

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 3 / 19

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG based streaming application

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 3 / 19

Application framework

Each workflow application ϕj produces the same result Φ.

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2 1

ϕ2
1

3

ϕ2
2

3

ϕ2
3

3

ϕ2
4

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
3

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

4

ϕ3
7

• Each task ϕj
i has a task type q

• Target throughput ρ
• Each application can be run at a

different throughput ρj

• ρ =
∑

j ρj

Target platform
One processor type per task type
• cq : Rental cost for type q
• rq : Throughput of type q

find the cheapest configuration to reach the target throughput

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 4 / 19

Application framework

Each workflow application ϕj produces the same result Φ.

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2 1

ϕ2
1

3

ϕ2
2

3

ϕ2
3

3

ϕ2
4

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
3

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

4

ϕ3
7

• Each task ϕj
i has a task type q

• Target throughput ρ
• Each application can be run at a

different throughput ρj

• ρ =
∑

j ρj

Target platform
One processor type per task type
• cq : Rental cost for type q
• rq : Throughput of type q

find the cheapest configuration to reach the target throughput

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 4 / 19

Problem definition

MinCOST: Minimize the global rental cost C
• an application described by J graphs
• a platform described by processor cost cq and throughput rq

• a given QoS ρ as a global output throughput

⇒ select which graphs ϕj are used

⇒ chose with which output throughput ρj (ρj = 0 if unused)

⇒ deduce xq processors of each type

MinCOST (ρ) = min
j

(
∑

j

xj · cq)

where ρ =
∑

j

ρj (1 ≤ j ≤ J)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 5 / 19

Problem resolution

Simple case
• the application is described by only one graph

General case

ρ =
∑

j

ρj

• Black box application
• Application graphs without shared task types
• Application graphs with shared task types

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 6 / 19

Simple case: Single application graph

• one application described by one single graph ϕ1

• ∀q, xq we can be easily computed:

xq =

⌈
nq

rq
· ρ
⌉

• the associated cost Cq

Cq(ρ) =

⌈
nq

rq
· ρ
⌉
× cq

• the final cost C:

C(ρ) =
Q∑

q=1

Cq(ρ) =
Q∑

q=1

⌈
nq

rq
· ρ
⌉
× cq

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 7 / 19

General case: Black box applications

• each graph ϕj = ϕj
1 is one complex task

∀j and ∀j ′(1 ≤ j, j ′ ≤ J) : t(1, j) = t(1, j ′)⇒ j = j ′

• let ρq the output of ϕj = ϕq

• xq can be found by solving the following linear program:
Minimize C(ρ) =

Q∑
q=1

xqcq

Under the constraint
Q∑

q=1

xqρq > ρ
ϕ1 1

ϕ1
1

ϕ2 2

ϕ2
1

ϕ3 3

ϕ3
1

⇒ this resembles a knapsack problem with repetition and negative weights
and values

• the knapsack problem is a (unary) NP-Complete problem

⇒ it exists a pseudo-polynomial dynamic program (time complexity O(Jρ))

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 8 / 19

Application graphs without shared task types

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2

4

ϕ2
1

5

ϕ2
2

ϕ3

6

ϕ3
1

6

ϕ3
2

6

ϕ3
4

7

ϕ3
5

7

ϕ3
6

• application Φ can be described by ϕ1, . . . , ϕj , . . . , ϕJ with the same
output result

• each task ϕj
i from one graph ϕj has a different type from every other task

of an other graph ϕj′

t(i, j) 6= t(i ′, j ′) with 1 ≤ j, j ′ ≤ J and j 6= j ′ and 1 ≤ i ≤ Ij and 1 ≤ i ′ ≤ Ij′

• this problem is at least (unary) NP-Complete

⇒ it exists also a pseudo-polynomial dynamic program to solve it

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 9 / 19

Applications without shared task types

a dynamic program to solve this problem
• let C(ρ, j be the optimal platform cost to reach ρ using the first j

application graphs

C(ρ, j) =



I1∑
i=1

⌈
n1

t(i,1)

rt(i,1)
· ρ

⌉
× ct(1,k) if j = 1

min
0≤ρj≤ρ

(
C(ρ− ρj , j − 1)+

Ij∑
i=1

⌈
nj

t(i,j)

r(t(i,j))
· ρj

⌉
× ct(i,j)

)
otherwise

⇒ the solution is given by C(ρ, J)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 10 / 19

Application graphs without shared task types

complexity analysis
• as ∀q, rq ∈ N, ∀j ρj ∈ N
→ it exists a finite number of ρj to test in the previous formulation
• to compute C(ρ, j), all C(ρ′, j ′) with ρ′ ≤ ρ and j ′ ≤ j has to be computed

⇒ the complexity of the elementary computation is O(ρI)

⇒ the complexity of computing C(ρ) is O(ρ2IJ)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 11 / 19

Application graphs with shared task types

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2

1

ϕ2
1

3

ϕ2
2

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

• one application is described by several graphs which share task type

∃ϕj , ϕj′(1 6 j, j ′ 6 J, j 6= j ′), ∃ i (1 6 i 6 Ij),

∃ i ′(1 6 i ′ 6 Ij′) s.t. t(i, j) = t(i ′, j ′)

⇒ a processor may be shared between several application graphs

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 12 / 19

Application graphs with shared task types

ILP formulation

Minimizing C(ρ) =
∑Q

q=1 xq · cq

under constraints
• ρ has to be at least the sum of ρj

J∑
j=1

ρj > ρ

• for each type q we have to provision enough resources (xq)

∀q xq · rq >
J∑

j=1

(Ij∑
i=1|t(i,j)=q

ρj

)
,

with q = t(i, j) and xq ∈ N

the complexity of this case is still open
unary or binary NP-Complete

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 13 / 19

Application graphs with shared task types

ILP formulation

Minimizing C(ρ) =
∑Q

q=1 xq · cq

under constraints
• ρ has to be at least the sum of ρj

J∑
j=1

ρj > ρ

• for each type q we have to provision enough resources (xq)

∀q xq · rq >
J∑

j=1

(Ij∑
i=1|t(i,j)=q

ρj

)
,

with q = t(i, j) and xq ∈ N

the complexity of this case is still open
unary or binary NP-Complete

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 13 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random ρ = (ρ1, ρ2, . . . , ρJ)

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph ρ = (0, . . . , ρ, . . . , 0)

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph
3. H2: random walk

• ϕj1 and ϕj2 are randomly chosen

(. . . , ρj1, . . . , ρj2, . . .)→ (. . . , ρj1−δ, . . . , ρj2+δ, . . .)

(. . . , ρj1, . . . , ρj2, . . .)→ (. . . , 0, . . . , ρj2+ρj1 . . .) if ρJ1 < δ

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk
4. H31: stochastic descent

• same as H2 except that we keep the same starting configuration as long as
we do not obtain any improvement (local minimum)

5. H32/H32Jump: steepest gradient

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent
5. H32/H32Jump: steepest gradient

• H32 same as H2 except we test every exchange (+/− δ) and keep the best
until no improvement is possible (local minimum)

• H32Jump same as H32 except we allows to explore solution that increases
C(ρ) to come out of local minima

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 14 / 19

Experiments: small application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.94

0.96

0.98

1.00

50 100 150 200
Throughput

N
or

m
al

iz
at

io
n(

C
os

t)

● ILP H1 H2 H31 H32 H32Jump

ILP: Gurobi
simulator: Python

Normalization of cost with the optimal solution
20 alternative graphs, between 5 and 8 tasks for each graph

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 15 / 19

Experiments: small application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

25

50

75

100

50 100 150 200
Throughput

C
ou

nt

● ILP H1 H2 H31 H32 H32Jump

Number of times where each algorithm finds the best
20 alternative graphs, between 5 and 8 tasks for each graph

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 15 / 19

Experiments: large application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.97

0.98

0.99

1.00

50 100 150 200
Throughput

N
or

m
al

iz
at

io
n(

C
os

t)

● ILP H1 H2 H31 H32 H32Jump

Normalization of cost with the optimal solution
20 alternative graphs, between 50 and 100 tasks for each graph

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 16 / 19

Experiments: large application graphs

●
●

●

● ●

●

●

●

●
●

●

●

● ●
●

● ● ● ●

1e−02

1e+00

1e+02

50 100 150 200
Throughput

T
im

e

● ILP H1 H2 H31 H32 H32Jump

Computation time for the heuristics
20 alternative graphs, between 100 and 200 tasks for each graph

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 16 / 19

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• the issue was to find a suitable distribution between DAGs

⇒ we deduce the platform to rent on the Cloud (minimize the rental cost)

• in some cases we exhibit algorithms to solve optimally the problem (even
if NP-Complete in the weak sens)

• the complexity of the most general case remains open

⇒ an ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 17 / 19

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• the issue was to find a suitable distribution between DAGs

⇒ we deduce the platform to rent on the Cloud (minimize the rental cost)

• in some cases we exhibit algorithms to solve optimally the problem (even
if NP-Complete in the weak sens)

• the complexity of the most general case remains open

⇒ an ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 17 / 19

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• the issue was to find a suitable distribution between DAGs

⇒ we deduce the platform to rent on the Cloud (minimize the rental cost)

• in some cases we exhibit algorithms to solve optimally the problem (even
if NP-Complete in the weak sens)

• the complexity of the most general case remains open

⇒ an ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 17 / 19

Perspectives

economical cost⇐⇒ energy cost

Green computing
• how to take energy into account when we rent resources on Cloud ?
• how to associate both economical and energetical criteria

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 18 / 19

Thanks for your attention

Jean-Marc.Nicod@femto-st.fr, March 29th, 2016 19 / 19

	Introduction and motivation
	Algorithmic solutions
	Heuristics for the general case
	Experiments
	Conclusion

