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Scheduling on identical machines with one extra
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Problem Definition

Given:

I m identical machines,

I one resource of size R ∈ N,

I a set of jobs J = {1, . . . ,n}. Each job has
I a processing time pj ∈ Q and
I a resource amount rj ∈ N with rj ≤ R.

Goal: Find a schedule τ : J → Q≥0 with minimum makespan, such
that:

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+pj )

rj ≤ R,

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+pj )

1 ≤ m.



Problem Definition

Given:

I m identical machines,

I one resource of size R ∈ N,

I a set of jobs J = {1, . . . ,n}. Each job has
I a processing time pj ∈ Q and
I a resource amount rj ∈ N with rj ≤ R.

Goal: Find a schedule τ : J → Q≥0 with minimum makespan, such
that:

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+pj )

rj ≤ R,

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+pj )

1 ≤ m.



Known Results

I There is no approximation algorithm with absolute ratio < 1.5,
unless P = NP (Drozdowski 1995)

I The list scheduling algorithm has absolute approximation ratio
3− 3/m (Garey and Graham 1975)

I There is a polynomial time approximation algorithm with absolute
ratio 2 + ε (Niemeier, Wiese 2013)

I For the case of unit processing times there is an AFPTAS with
A(I) ≤ (1 + ε)OPT +O(min{(1/ε2)(1/ε),n log(R)/ε+ 1/ε3})
(Epstein and Levin 2010)



New Result

Theorem
There is an asymptotic FPTAS for the resource constrained
scheduling problem with

A(I) ≤ (1 + ε)OPT(I) +O(1/ε2)pmax,

where pmax is the maximal processing time in the set of jobs.



Algorithm Overview

1. Simplify the instance and find an approximative preemptive
schedule via a configuration LP.

2. Generalize the configurations by considering windows for narrow
jobs.

3. Transform the preemptive schedule into a solution of a LP with
generalized configurations.

4. Reduce the number of generalized configurations and windows
in the LP solution.

5. Generate an integral solution.



Simplifying

I Partition J into wide jobs JW

and narrow jobs JN .

I Reduce the number of
different wide resource
amounts to 1/ε2.

I Glue together wide jobs with
same resource amount.

I Discard widest group

I Simplified instance: Isup.

εR



Definition Configuration

A configuration C is a multiset of jobs with:

I
∑

j C(j)rj ≤ R,

I
∑

j C(j) ≤ m.

C(j) ∈ N says how often the job j is contained in C.
Let C be the set of all configurations.

m = 4

X

×

R

xC1

xC2
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Preemptive Schedule

min
∑
C∈C

xC (1)

∑
C∈C

C(j)xC ≥ pj ∀j ∈ J sup (2)

xC ≥ 0 ∀C ∈ C (3)

I Can be solved approximately by max-min-resource-sharing.

I An approximate solution with at most |J sup|+ 1 non zero
components can be computed in polynomial time.
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Generalized Configuration

I A window w = (wr ,wm) is a pair, where
I wr denotes its resource amount and
I wm its number of machines.

I A generalized configuration (C,w) is a pair consisting of
I a configuration of wide jobs C and
I a window w

where
I

∑
j∈J sup

W
C(j)rj + wr ≤ R and

I
∑

j∈J sup
W

C(j) + wm ≤ m.



Generalized Preemptive Solution
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Generalized Configuration LP∑
C∈CW

∑
w∈W

w≤w(C)

C(j)x(C,w) ≥ pj , ∀j ∈ J sup
W (4)

∑
w∈W

yj,w ≥ pj , ∀j ∈ J sup
N (5)

wm

∑
C∈CW

w(C)≥w

x(C,w) ≥
∑
j∈JN

yj,w , ∀w ∈ W (6)

wr

∑
C∈CW

w(C)≥w

x(C,w) ≥
∑
j∈JN

rjyj,w , ∀w ∈ W (7)

x(C,w) ≥ 0, ∀C ∈ CW ,∀w ∈ W (8)

yj,w ≥ 0, ∀w ∈ W,∀j ∈ J sup
N (9)

I Basic solution has |J sup
W |+ |J sup

N |+ 2|W| non zero components.

I At most |J sup
W |+ 2|W| configurations and fractional jobs.

I |J sup
W | ∈ O(1/ε2), |W| ∈ O(min{|J sup|, |CW |})
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Properties

I 1/ε different stacks of generalized configurations.

I ε2Ppre additional processing time per stack

I εPpre additional total processing time

I Number of windows ≤ 1/ε2 + 2.

I Basic solution has O(1/ε2) configurations and O(1/ε2) fractional
small jobs
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Scheduling With Resource Dependent Processing

Times

Given:

I m identical machines,

I one resource of size R ∈ N,

I a set of jobs J = {1, . . . ,n}. Each job has a processing time
function πj : {0, . . . ,R} → Q≥0 ∪ {∞}.

Goal: Find a resource allocation ρ : J → {0, . . . ,R} and schedule
τ : J → Q≥0 with minimal makespan, such that:

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+πj (ρ(j)))

ρ(j) ≤ R,

∀t ≥ 0
∑

j:t∈[τ(j),τ(j)+πj (ρ(j)))

1 ≤ m.



Known Results

I There is a 3.5 + ε approximation algorithm for the scheduling
problem on identical machines (Kellerer 2008).

I There is a 3 + ε approximation algorithm for the scheduling
problem where each job is pre-assigned to one machine
(Grigoriev, Uetz 2009).

I There is a 3.75 + ε approximation algorithm for the scheduling
problem on unrelated machines (Grigoriev et al. 2007).



New Result

Theorem
There is an asymptotic FPTAS for the scheduling problem with
resource dependent processing times with

A(I) ≤ (1 + ε)OPT(I) + O(1/ε2)πmax.

The running time of the algorithm is polynomially bounded in n,R, and
1/ε.



Overview

I Compute preemptive schedule, where jobs are allowed to have
several resource amounts

I Use the preemptive schedule to define an instance for the fixed
resource variant

I Apply the steps of the fixed resource algorithm until a solution for
the generalised LP is found.

I Use this solution to define unique resource allotment for almost
all the original jobs

I Define a new solution to the LP using the unique resource
allotment

I Define the integral schedule

I Schedule the jobs with no unique resource allotment on top



Future Work

Resource independent processing times:

I Is there an approximation algorithm A with A(I) < (2 + ε)OPT(I)?

I Can we reduce the additive term to pmax and how far would this
increase the running time of the algorithm?

Resource dependent processing times:

I Can the additional factor πmax be reduced?

I Can we improve on the result for unrelated machines?


