Run Generation Revisited:
What Goes Up May or May Not Come Down

Shikha Singh

Joint Work with :
Michael A. Bender, Samuel McCauley, Andrew McGregor,

and Hoa T. Vu

q\\\‘ Stony Brook

University

wa AMHERST

R Y

{ Run Seneration Revisited:
What Goes Up May or May Not Come Down

e Contiguous sequence of sorted elements in an array

5|9 |11 2|47 |6|13|25/303 |5 |7 |1

e Number of runs:

» Smallest number of runs that partition the array

Reorder elements arriving from a (large) input stream
using a (small) buffer to produce long runs

Buffer
21

13

Input Stream utput Stream

14
14171913 [15|17|8 |1 6 .| 9 15|17 |21

e Scan input ingesting elements into buffer
e Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which
elements must be output so as to minimize the number of runs

Buffer
21

%)
13

Input Stream utput Stream

14
417191315178 |1 6 .| 91517 |21

Related: Reordering Buffer Management

e Ingestinput elements, each of a certain color, into buffer
e Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements
must be output so as to minimize the number of color changes

Buffer

Input Stream utput Stream

Related: Reordering Buffer Management

e Well-known scheduling problem

e Extensively studied (both online and offline case)
» [Racke, Sohler and Westermann 2002]

Asahiro, Kawahara and Miyano 2012]

[Avigdor-Elgrabli and Rabani 2013]

Bar-Yehuda and Laserson 2007]

Chan, Megow, Sitters and van Stee 2012]

 Englert and Westermann 2005]

[Im and Moseley 2013, 2015]

[Avigdor-Elgrabli, Im, Moseley and Rabani 2015]

vV VvV VvV VvV VvV VvV VY

May 9, 1961 £ F. MOORE 2.983.904
SORTING WETHOD N AT AT
- L4 3 Bte-Sent)
e
Y IEANAL O
v (oo ol R
(SOMENCEE OF AL mal ™D WOROY, and (v s mabeTICAL OMPER)
-) }

1A sios [0 Ow® KATNEDE BOOGENT
wyrs) L
A s,

—— ——

1961

Business Applications

1967

Internal and Tape Sorting Using the
Replacement-Selection Technique”

O. TEICHAOLW, Caiver

Martin A. Goetz . » .
Appbeod Dot Ressorch, lnc. Princeton, N. J. Length of Strings for a Merge Sort

Doxarp E. Kyomm

6 Calyformia Inatitste of Technology
1 9 3 Pasadena, Califormsa

—— —————————

1963
Sorting by

Natural Selectio
: dll l ‘ll SL"'L“ n Perfectly Overlapped Generation of Long Runs
WD Frazes for Sorting Large Files*

I
CRK W YenOnus Lin

IBM Thon J Wt Rescarch Cent

1972 1973

® Studied in the context of External Memory Merge Sort

FAST GENERATION OF LONG SORTED RUNS FOR
SORTING A LARGE FILE

Speeding up External Mergesort

Yenhun Lin and Yu-Ho Oheng
Dege of Elecwonic .,.‘;,.m, LuoQuan Zheng and Per-Ake Larson *

National Taiwan Instiute of Technology

Taigel, Taiwan, R.O.C

— —

1991

Perfectly overlapped generation of long runs on a transputer array for sorting Memory Management during Run Generation in External
' Sorting
Yen-Chan Lin*, Horng-Yi Lai Por-Ake Larson Gostz Graele
Myt of Flocovomsy Enpnsering, Nosowid Tatwen inaw of Tochmabogy, P O Ben 90 000 Taper 106, Tabwim N <roson Mcoscech
vod 18 Sasch 19 sovisad 20 Nowvemmber 1998 acceprad 9 December 1998 PALason B microsck com GostaGEmICOscR com

1997 1998

® Continued work to improve run length (to speed up merge)

MRS ONS ON QUOWL EDGE AND DATA ENGENE SR NG VER 3 NOD & A

External Sorting: Run Formation Revisited

Per-Ake Larson, Member, IEEE Computer Society

2003

Two-way Replacement Selection

Xavier Martinez-Palau, David Dominguez-Sal, Josep Lius Larriba-Pey

DAMA.UPC, Departament ¢"Arquitectura de Comptadors
U miverstat Poltécnca de Catalunya
Campus Nord-UPC, 08034 Barceiona

{xmartine, ddomings larri} @ac.upc.edu

2010

Implementing Sorting in Database Systems

GOETZ GRAEFE

Microsoft

2006

External Sorting on Flash Memory
Via Natural Page Run Generation

YANG Liv, ZHEN HE, Y1-PING PHOESE CHEN AND THI NGUYE
Deparsmens of { cmmpeater Levewmce amd Computer L npimeermg La Tode Umpvarary, V0 A0 Asvepba
Emaal 3340 W wudontr bwvvdv odu e, 2 W laarobe ada sn. Phovde O @ laamtv odn on,

e gwrend mbents havdv odn ow
— ——

® (lassic Problem: Studied for over 5 decades!

e Up Runs are monotonically increasing (sorted)

e Down Runs are monotonically decreasing (reverse sorted)

9 |11 |7 | 4| 21|30|25]|13| 6| 8 |12]|17 |21

|y S

Run Generation: Problem Definition

Input: Stream of NV elements

Can be stored temporarily in a buffer of size M < N
Buffer gets full -> write an element to output stream
Next element is read into the slot freed

Buffer is always full (except when < M elements remain)

21

13

14

Run Generation: Problem Definition

e Schedule dictates what to eject based on
» Contents of buffer, last element written

e Cannot arbitrarily access input or output
» Read next-in-order from input, append to output

21

13

14

Naive Run Generation

e Load M elements to the buffer

e Sort these M elements

e Output them in sorted order

sort

—

19

-

read M

23

write M

12

16

713 |12

Runs of length M

Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort

3
~read M | 10 ~write M
12| 5 |16 8 (19|23

Runs of length M

Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort
f\ = \
5
) read M) 16 ‘writeM)

8119|233 | 7 |12

Runs of length M

Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort

8119|23|3 |7

Runs of length M

Naive Run Generation

e Load M elements to the buffer

e Sort these M elements

e Output them in sorted order

sort

————

Base Cgse of Externg]

Merge Sor
1 2 3
8119|233 | 7 |12 12 |16

Runs of length M

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

19
23

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

15
19
23

12| 51|16 7 | 3 8

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:

» Starting from a full buffer, output smallest element

» Output smallest element in buffer > the last output

» If no such element, start a new run and continue

19

:

23

ﬂ

12

16

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

A A

12| 5 |16 8 (15|19

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

16

12| 5 8 |15|19 |23

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

16

12 815|119 (23| 3

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:

» Starting from a full buffer, output smallest element

» Output smallest element in buffer > the last output

» If no such element, start a new run and continue

12

16

e

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer>> the last output
» If no such element, start a new run and continue

12

16

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

16 T

Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
» Starting from a full buffer, output smallest element
» Output smallest element in buffer > the last output
» If no such element, start a new run and continue

8115/19|23|3 | 5| 7 |12

Runs of length > M

Performance of Replacement Selection

e Onrandom data, expected length of a run is 2M

“The perpetual plow on its ceaseless cycle.” - Knuth 98

Performance of Replacement Selection

However, on inversely sorted input

15

23
19 '
16 -
1 2 3
16 (19(23| 8 |12 |15 7

Runs of length M on reverse sorted input

Performance of Replacement Selection

e If the input stream is mostly increasing 99
» Up runs are great A
e Ifthe input stream is mostly decreasing W

- : =

» Upruns don’t help

\
\Q -
From the point of view of sorting (merging),

the direction of runs (up or down)
doesn’t really matter.

Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

23

19
16

Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

12

Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

(1] A

Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

16|19(23|15|12| 8

Alternating-Up-Down Schedule

Deterministically alternate between up and down runs

16

19

23

15

12

Runs of length > M

Alternating-Up-Down Schedule

e Isthis than replacement selection?

Alternating-Up-Down Schedule

e Is this better than replacement selection?

e [Knuth 63] On random data, it is worse

» Average run length is 1.5M, compared to 2M

Two-Way Replacement Selection

e [Martinez-Palau et al. VLDB 10]

» Heuristically choos

e between an up and down run

» Slightly better than Replacement Selection on some data

Input —— Input Buffer —

—— Top Heap ——

Up Run

—— Bottom Heap Down Run

To run up or down, that is the question...

3 . # ~ . - 3 - 1w
, i » : £ c. [* - s "~’“~~‘
S .' Q o . A m t d J ‘ .\ :
L 1 ’_v"‘" .\ b Ta M > s %' »
" & Q‘ o ‘ g . uh“ G < 3 . ‘
ol ‘ '1 s "\ o" ‘f‘.‘ . 3 ’ ; y
: ¢ ’ 4 ‘ » .
’ '., ‘v# ... - ¢}>
¥ & - . b / .
' .
- dm.

- W
L é - »
-

N -
' : ‘
A - : P

Our Main Contributions

e Theoretical foundation of the run generation problem

e Competitive analysis of run generation scheduling policies

"My Momma always said smart 2hings aboed life and
chocolddes... But I need Zo knocw Zhe ¢heory betind it.."

o

Our Results

e Alternating-Up-Down Replacement Selection is
» 2-competitive
» Best possible
e Improve competitive ratio with resource augmentation

e Improve performance when input is nearly sorted

"My Momma always said smart 2hings aboed life and
chocolddes... But I need Zo knocw Zhe ¢heory betind it.."

.

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

Useful Observations

e Adding elements to an input stream cannot help
» If I is a subsequence of I, OPT(T’)

e Writing extra elements (compared to OPT) doesn’t hurt

WLOG

e Algorithm must always write maximal runs
» Never end a run unless forced to

» Never skip over elements

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

Alternating-Up-Down is 2-competitive

Proof Sketch

e At each decision point, suppose OPT goes up/down
» A maximal up and down run goes at least as far

» Every two runs cover at least one run of OPT

Up-Down

t.]

OPT

Lower Bounds

e No deterministic algorithm can do better than a 2-approx

» Adversary switches the upcoming input wrt decision made

e Norandomized algorithm can do better than a 1.5-approx

» Yao’s minimax

e No online algorithm can be better than a 2-approximation

4

Extra buffer

g

3 |12

Regular buffer

Resource Augmentation

Can we do better with extra buffer or lookahead?

=7

23

5
/
7

4

13

12

S

Lookahead

13

Resource Augmentation: No Duplicates

Resource augmentation results require uniqueness

4

Duplicates nullify extra buffer or lookahead

10
(oo

cM-Buffer

9

11

10

1
‘ A

.15

14

13

12

10

10

10

10 |

M

(c-1)M

(c-1)-Lookahead

AP
QuQ‘
IL ’f\
S
9
11
.|113]12|10|10|10|10|10|10|10]| 1O
(c-1)M

Main Idea Behind Resource Augmentation:
What Would Greedy Do?

e Greedy chooses the longer run at every decision point

» Not an online algorithm

e Greedy has some good guarantees

» Upper bound and lower bound on run lengths

Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

GREEDY OPT

Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

N DA

. o o~
2 0 >]‘7*1) 1 -M

INPUT

No Suarantee on

& OPT’s yyn length | 2y)

N 0"1 Af
\/If . -z,

GREEDY OPT

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I, let r; and r- be two possible runs in opposite

directions, then |r:|< 3M or |rz| < 3M.
/ rl

17
13
11

1|7 (13| 4 |21|10 %

1

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r; and r» be two possible runs
in opposite directions, then |r:|< 3M or |rs| < 3M.

Take-away
e Don’t have to look too far into the future to know greedy’s choice

Sketchy Proof of Key Lemma

51 needs to fit in
12’s buffey |

13

11

Sketchy Proof of Key Lemma

s; <M So N : Elements of S» not in initial buffer

SaN+tip <M t1,B : Elements of [; in initial buffer

Both need ¢ fit
T buffer ar ;

Sketchy Proof of Key Lemma

S1 SM

SoN+tiB <M

So N : Elements of S» not in initial buffer

[1,B : Elements of f;in initial buffer

t1,

21

10

;i : Elements in 1; and read in after i

/— B -

L1,i cannot bl

Sketchy Proof of Key Lemma

S <M So N : Elements of S> not in initial buffer

SoN+ g <M t1,B : Elements of [; in initial buffer

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

U2 must eqjentually
be m T 17

Sketchy Proof of Key Lemma

s <M So N : Elements of S> not in initial buffer

SoN+ g <M t1,B : Elements of [; in initial buffer

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

r; §S1 + So N + t1,B + t1,i + U>

S1 SM

SoN+tiB <M

Us SM

Sketchy Proof of Key Lemma

So N : Elements of S> not in initial buffer
[1,B : Elements of f;in initial buffer

l1,i : Elements in I"; and read in after i

U> : Elements not in > and read in before 1

r; §S1 + So N + t1,B + t1,i + U>

Weaker bound of 4M

If r1 > 4M then t;; >M

Sketchy Proof of Key Lemma

s; <M So N : Elements of S» not in initial buffer
[:.B : Elements of f;in initial buffer
SoN+t U, <M b !

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

I's §S1 + So N + t1,B + t1,i + U>

Weaker bound of 4M

If r1 > 4M then t;; >M

rs < 4M

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r; and r» be two possible runs
in opposite directions, then |r:|< 3M or |rs| < 3M.

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4M 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

Warm Up: Matching OPT with 4M buffer

Algorithm
1. Read elements until entire buffer (4M) is full
2. Determine what greedy (with M buffer) would do

3. Write a maximal run in greedy’s direction

Greedy

&

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do

2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

N

11

10

17

20

M

N\

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

Lemma

At any decision point, if OPT chooses a non-greedy run (say
down), it’s next run must be in the same direction (down).

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

US

OPT

Lower Bound on Resource Augmentation

Almost tight

e With a buffer of size

» No deterministic algorithm can do better than 1.5-approx

e Above lower bound implies lower bound for visibility

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 2M M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments

2 M - Tight

1.5 M 3M Tight

1.75 oM M Randomized
1 4qM 3M Tight

(1+5) M N-M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Offline Run Generation Problem

e Given the input in advance, compute the policy which
produces the minimum possible number of runs

e We have a PTAS

° Polynomial time offline (exact) policy?

Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M o \Tlght
1.5 M | C'Tlearly sorted: \lght
175 Ml Obtimal has ryun; of Iomlzed
) 4M\ length q¢ least cM bght
(1+€) M e e
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted

The Road Ahead

Polynomial offline exact algorithm
Does Randomization help?
Practical speed ups

» How can we use the new structural insights?

Parallel instead of sequential writes?

» Very similar to Patience Sort

A Shout Out to the Team!

Michael

