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{ Run Seneration Revisited:
What Goes Up May or May Not Come Down

e Contiguous sequence of sorted elements in an array

5|9 |11 2|47 |6|13|25/303 |5 |7 |1

e Number of runs:

»  Smallest number of runs that partition the array



Reorder elements arriving from a (large) input stream
using a (small) buffer to produce long runs
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e Scan input ingesting elements into buffer
e Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which
elements must be output so as to minimize the number of runs
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Related: Reordering Buffer Management

e Ingestinput elements, each of a certain color, into buffer
e Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements
must be output so as to minimize the number of color changes

Buffer

Input Stream utput Stream




Related: Reordering Buffer Management

e Well-known scheduling problem

e Extensively studied (both online and offline case)
» [Racke, Sohler and Westermann 2002]

Asahiro, Kawahara and Miyano 2012]

[Avigdor-Elgrabli and Rabani 2013]

Bar-Yehuda and Laserson 2007]

Chan, Megow, Sitters and van Stee 2012]

 Englert and Westermann 2005]

[ Im and Moseley 2013, 2015]

[Avigdor-Elgrabli, Im, Moseley and Rabani 2015]
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® Studied in the context of External Memory Merge Sort
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® Continued work to improve run length (to speed up merge)
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® (lassic Problem: Studied for over 5 decades!



e Up Runs are monotonically increasing (sorted)

e Down Runs are monotonically decreasing (reverse sorted)
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Run Generation: Problem Definition

Input: Stream of NV elements

Can be stored temporarily in a buffer of size M < N
Buffer gets full -> write an element to output stream
Next element is read into the slot freed

Buffer is always full (except when < M elements remain)
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Run Generation: Problem Definition

e Schedule dictates what to eject based on
»  Contents of buffer, last element written

e Cannot arbitrarily access input or output
»  Read next-in-order from input, append to output

21

13

14




Naive Run Generation

e Load M elements to the buffer

e Sort these M elements

e Output them in sorted order

sort

—
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Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort
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Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort
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Naive Run Generation

e Load M elements to the buffer
e Sort these M elements

e Output them in sorted order

sort
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Naive Run Generation

e Load M elements to the buffer

e Sort these M elements

e Output them in sorted order

sort
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:

»  Starting from a full buffer, output smallest element

»  Output smallest element in buffer > the last output

» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:

»  Starting from a full buffer, output smallest element

»  Output smallest element in buffer > the last output

» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer>> the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Classic Schedule: All Up Runs

e Replacement Selection [Goetz 63]:
»  Starting from a full buffer, output smallest element
»  Output smallest element in buffer > the last output
» If no such element, start a new run and continue
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Performance of Replacement Selection

e Onrandom data, expected length of a run is 2M

“The perpetual plow on its ceaseless cycle.” - Knuth 98



Performance of Replacement Selection

However, on inversely sorted input
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Performance of Replacement Selection

e If the input stream is mostly increasing 99
» Up runs are great A
e Ifthe input stream is mostly decreasing W

- : =

» Upruns don’t help
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From the point of view of sorting (merging),

the direction of runs (up or down)
doesn’t really matter.



Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs

(1] A




Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs




Alternating-Up-Down Schedule

e Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

e Isthis than replacement selection?



Alternating-Up-Down Schedule

e Is this better than replacement selection?

e [Knuth 63] On random data, it is worse

»  Average run length is 1.5M, compared to 2M



Two-Way Replacement Selection

e [Martinez-Palau et al. VLDB 10]

»  Heuristically choos

e between an up and down run

»  Slightly better than Replacement Selection on some data

Input —— Input Buffer —

—— Top Heap ——

Up Run

—— Bottom Heap Down Run



To run up or down, that is the question...
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Our Main Contributions

e Theoretical foundation of the run generation problem

e Competitive analysis of run generation scheduling policies

"My Momma always said smart 2hings aboed life and
chocolddes... But I need Zo knocw Zhe ¢heory betind it.."

o




Our Results

e Alternating-Up-Down Replacement Selection is
»  2-competitive
»  Best possible
e Improve competitive ratio with resource augmentation

e Improve performance when input is nearly sorted

"My Momma always said smart 2hings aboed life and
chocolddes... But I need Zo knocw Zhe ¢heory betind it.."

.




Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted




Useful Observations

e Adding elements to an input stream cannot help
» If I is a subsequence of I, OPT(T’)

e Writing extra elements (compared to OPT) doesn’t hurt

WLOG

e Algorithm must always write maximal runs
» Never end a run unless forced to

» Never skip over elements



Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted




Alternating-Up-Down is 2-competitive

Proof Sketch

e At each decision point, suppose OPT goes up/down
» A maximal up and down run goes at least as far

»  Every two runs cover at least one run of OPT

Up-Down

t.]

OPT



Lower Bounds

e No deterministic algorithm can do better than a 2-approx

»  Adversary switches the upcoming input wrt decision made

e Norandomized algorithm can do better than a 1.5-approx

» Yao’s minimax



e No online algorithm can be better than a 2-approximation
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Resource Augmentation

Can we do better with extra buffer or lookahead?
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Resource Augmentation: No Duplicates

Resource augmentation results require uniqueness

4

Duplicates nullify extra buffer or lookahead
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Main Idea Behind Resource Augmentation:
What Would Greedy Do?

e Greedy chooses the longer run at every decision point

»  Not an online algorithm

e Greedy has some good guarantees

»  Upper bound and lower bound on run lengths




Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT

GREEDY OPT



Note: Greedy is Not Optimal

Can be as bad as 1.5 times OPT
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Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I, let r; and r- be two possible runs in opposite

directions, then |r:|< 3M or |rz| < 3M.
/ rl
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Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r; and r» be two possible runs
in opposite directions, then |r:|< 3M or |rs| < 3M.

Take-away
e Don’t have to look too far into the future to know greedy’s choice




Sketchy Proof of Key Lemma

51 needs to fit in
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Sketchy Proof of Key Lemma

s; <M So N : Elements of S» not in initial buffer

SaN+tip <M t1,B : Elements of [; in initial buffer

Both need ¢ fit
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Sketchy Proof of Key Lemma

S1 SM

SoN+tiB <M

So N : Elements of S» not in initial buffer

[1,B : Elements of f;in initial buffer

t1,
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Sketchy Proof of Key Lemma

S <M So N : Elements of S> not in initial buffer

SoN+ g <M t1,B : Elements of [; in initial buffer

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

U2 must eqjentually
be m T 17




Sketchy Proof of Key Lemma

s <M So N : Elements of S> not in initial buffer

SoN+ g <M t1,B : Elements of [; in initial buffer

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

r; §S1 + So N + t1,B + t1,i + U>
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SoN+tiB <M

Us SM

Sketchy Proof of Key Lemma

So N : Elements of S> not in initial buffer
[1,B : Elements of f;in initial buffer

l1,i : Elements in I"; and read in after i

U> : Elements not in > and read in before 1

r; §S1 + So N + t1,B + t1,i + U>

Weaker bound of 4M

If r1 > 4M then t;; >M




Sketchy Proof of Key Lemma

s; <M So N : Elements of S» not in initial buffer
[:.B : Elements of f;in initial buffer
SoN+t U, <M b !

l1,i : Elements in I"; and read in after i
U < M . . .
— U- : Elements not in "> and read in before 1

I's §S1 + So N + t1,B + t1,i + U>

Weaker bound of 4M

If r1 > 4M then t;; >M

rs < 4M




Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r; and r» be two possible runs
in opposite directions, then |r:|< 3M or |rs| < 3M.




Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
1 4M 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted




Warm Up: Matching OPT with 4M buffer

Algorithm
1. Read elements until entire buffer (4M) is full
2. Determine what greedy (with M buffer) would do

3. Write a maximal run in greedy’s direction

Greedy

&




Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 oM M Randomized
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(1+€) M N-M Offline
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Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do

2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

N
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Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

Lemma

At any decision point, if OPT chooses a non-greedy run (say
down), it’s next run must be in the same direction (down).



Theorem: 1.5-Approximation with 4M-visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction

3. Write two more - in the same and opposite direction

US

OPT



Lower Bound on Resource Augmentation

Almost tight

e With a buffer of size

»  No deterministic algorithm can do better than 1.5-approx

e Above lower bound implies lower bound for visibility



Summary of Our Results

Competitive Ratio | Buffer Size | Lookahead Comments
2 M - Tight
1.5 M 3M Tight
1.75 2M M Randomized
1 4qM 3M Tight
(1+€) M N-M Offline
1.5 2M 2M 3-nearly sorted
1 M N 5-nearly sorted




Summary of Our Results
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Offline Run Generation Problem

e Given the input in advance, compute the policy which
produces the minimum possible number of runs

e We have a PTAS

° Polynomial time offline (exact) policy?
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The Road Ahead

Polynomial offline exact algorithm
Does Randomization help?
Practical speed ups

» How can we use the new structural insights?

Parallel instead of sequential writes?

» Very similar to Patience Sort
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