Run Generation Revisited: What Goes Up May or May Not Come Down

Shikha Singh

Joint Work with :
Michael A. Bender, Samuel McCauley, Andrew McGregor, and Hoa T. Vu
\star Stony Brook University

Run Generation Revisited:

 What Goes Up May or May Not Come Down- Contiguous sequence of sorted elements in an array

5	9	11	2	4	7	6	13	25	30	3	5	7	11

- Number of runs:
- Smallest number of runs that partition the array

Run Generation Revisited:

 What Goes Up inay or May Not Come DownReorder elements arriving from a (large) input stream using a (small) buffer to produce long runs

Run Generation Revisited:

 What Goes Up iviay or May Not Come Down- Scan input ingesting elements into buffer
- Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which elements must be output so as to minimize the number of runs

Related: Reordering Buffer Management

- Ingest input elements, each of a certain color, into buffer
- Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements must be output so as to minimize the number of color changes

Related: Reordering Buffer Management

- Well-known scheduling problem
- Extensively studied (both online and offline case)
- [Racke, Sohler and Westermann 2002]
- [Asahiro, Kawahara and Miyano 2012]
- [Avigdor-Elgrabli and Rabani 2013]
- [Bar-Yehuda and Laserson 2007]
- [Chan, Megow, Sitters and van Stee 2012]
- [Englert and Westermann 2005]
- [Im and Moseley 2013, 2015]
- [Avigdor-Elgrabli, Im, Moseley and Rabani 2015]

Run Generatiol Revisited: What Goes Up May or May Not Come Down

 1967

Internal and Tape Sorting Using the Replacement-Selection Technique*

Martin A. Goetz
Applied Dofo Reseeret, Inc, Princeton, N, J.
1963

Scientific and

Business Applications
D. TEICMAOLW, Editer

Length of Strings for a Merge Sort

Dosald E. Kvorn

Califernia Inatitule of Teclnelogy Pasodena, Califlornia

1963

Perfectly Overlapped Generation of Long Runs for Sorting Large Files*

Yen-Chun Lin
1973

- Studied in the context of External Memory Merge Sort

Run Generatiol Revisited: What Goes Up May or May Not Come Down

FAST GENERATION OF LONG SORTED RUNS FOR sorting a large file

Yen-Chun Lin and Yu-Ho Cheng Depe of Electronic Engincering
National Taiwan lastitute of Technology Taipel, Taiwan, R.OC

$$
1991
$$

Perfectly overlapped generation of long runs on a transputer array for sorting
Yen-Chan Lin*, Horng-Yi Lai

1997

Speeding up External Mergesort
LuoQuan Zheng and Per-Ȧke Larson *
1996

Memory Management during Run Generation in External Sorting

- Continued work to improve run length (to speed up merge)

Run Generatiol Revisited: What Goes Up May or May Not Come Down

External Sorting: Run Formation Revisited
Per-Ake Larson, Membor, IEEE Computer Society

$$
2003
$$

Implementing Sorting in Database Systems
GOETZ GRAEFE
Microsoft
2006

External Sorting on Flash Memory
Via Natural Page Run Generation
Yano Liu, Zhen He, Yi-Pino Peoebe Chev and Thi Nouyen

 nibeppent inserthineterne.a

2011

- Classic Problem: Studied for over 5 decades!

Run Generation Revisited: What Goes Up May or May Not Come Down

- Up Runs are monotonically increasing (sorted)
- Down Runs are monotonically decreasing (reverse sorted)

Run Generation: Problem Definition

- Input: Stream of N elements
- Can be stored temporarily in a buffer of size $M<N$
- Buffer gets full -> write an element to output stream
- Next element is read into the slot freed
- Buffer is always full (except when $<M$ elements remain)

Run Generation: Problem Definition

- Schedule dictates what to eject based on
- Contents of buffer, last element written
- Cannot arbitrarily access input or output
- Read next-in-order from input, append to output

Naive Run Generation

- Load M elements to the buffer
- \quad Sort these M elements
- Output them in sorted order

Runs of length M

Naive Run Generation

- Load M elements to the buffer
- \quad Sort these M elements
- Output them in sorted order

Runs of length M

Naive Run Generation

- Load M elements to the buffer
- \quad Sort these M elements
- Output them in sorted order

Runs of length M

Naive Run Generation

- Load M elements to the buffer
- \quad Sort these M elements
- Output them in sorted order

Runs of length M

Naive Run Generation

- Load M elements to the buffer
- \quad Sort these M elements
- Output them in sorted order

Runs of length M

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Classic Schedule: All Up Runs

- Replacement Selection [Goetz 63]:
- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Runs of length $>M$

Performance of Replacement Selection

- On random data, expected length of a run is 2 M

"The perpetual plow on its ceaseless cycle." - Knuth '98

Performance of Replacement Selection

- However, on inversely sorted input

Runs of length M on reverse sorted input

Performance of Replacement Selection

- If the input stream is mostly increasing - Up runs are great
- If the input stream is mostly decreasing
- Up runs don't help

From the point of view of sorting (merging), the direction of runs (up or down) doesn't really matter.

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

- Deterministically alternate between up and down runs

Runs of length $>M$

Alternating-Up-Down Schedule

- Is this better than replacement selection?

Alternating-Up-Down Schedule

- Is this better than replacement selection?
- [Knuth 63] On random data, it is worse
- Average run length is 1.5 M , compared to 2 M

Two-Way Replacement Selection

- [Martinez-Palau et al. VLDB 10]
- Heuristically choose between an up and down run
- Slightly better than Replacement Selection on some data

Input \longrightarrow Input Buffer

To run up or down, that is the question...

Our Main Contributions

- Theoretical foundation of the run generation problem
- Competitive analysis of run generation scheduling policies
"My Momma always said smart things about life and chocolates... But I need to know the theory behind it.."

Our Results

- Alternating-Up-Down Replacement Selection is
- 2-competitive
- Best possible
- Improve competitive ratio with resource augmentation
- Improve performance when input is nearly sorted
"My Momma always said smart things about life and chocolates... But I need to know the theory behind it.."

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
$\mathbf{2}$	\mathbf{M}	-	Tight
1.5	M	3 M	Tight
1.75	2 M	M	Randomized
1	4 M	3 M	Tight
$(1+\varepsilon)$	M	$\mathrm{N}-\mathrm{M}$	Offline
1.5	2 M	2 M	3-nearly sorted
1	M	N	5-nearly sorted

Useful Observations

- Adding elements to an input stream cannot help
- If I is a subsequence of $I, O P T\left(I^{\prime}\right)$
- Writing extra elements (compared to OPT) doesn't hurt

WLOG

- Algorithm must always write maximal runs
- Never end a run unless forced to
- Never skip over elements

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
$\mathbf{2}$	\mathbf{M}	-	Tight
1.5	M	3 M	Tight
1.75	2 M	M	Randomized
1	4 M	3 M	Tight
$(1+\varepsilon)$	M	$\mathrm{N}-\mathrm{M}$	Offline
1.5	2 M	2 M	3-nearly sorted
1	M	N	5-nearly sorted

Alternating-Up-Down is 2-competitive

Proof Sketch

- At each decision point, suppose OPT goes up/down
- A maximal up and down run goes at least as far
- Every two runs cover at least one run of OPT

Lower Bounds

- No deterministic algorithm can do better than a 2-approx
- Adversary switches the upcoming input wrt decision made
- No randomized algorithm can do better than a 1.5-approx
- Yao's minimax

Resource Augmentation

- No online algorithm can be better than a 2-approximation
- Can we do better with extra buffer or lookahead?

Regular buffer

Resource Augmentation: No Duplicates

- Resource augmentation results require uniqueness
- Duplicates nullify extra buffer or lookahead

(c-1)-Lookahead

Main Idea Behind Resource Augmentation: What Would Greedy Do?

- Greedy chooses the longer run at every decision point
- Not an online algorithm
- Greedy has some good guarantees
- Upper bound and lower bound on run lengths

Note: Greedy is Not Optimal

- Can be as bad as 1.5 times OPT

Note: Greedy is Not Optimal

- Can be as bad as 1.5 times OPT

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input $I_{\text {, let }} r_{1}$ and r_{2} be two possible runs in opposite directions, then $\left|r_{1}\right|<3 M$ or $\left|r_{2}\right|<3 M$.

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r_{1} and r_{2} be two possible runs in opposite directions, then $\left|r_{1}\right|<3 M$ or $\left|r_{2}\right|<3 M$.

Take-away

- Don't have to look too far into the future to know greedy's choice

Sketchy Proof of Key Lemma

$$
s_{1} \leq M
$$

Sketchy Proof of Key Lemma

$s_{1} \leq M$
$s_{2, N}+t_{1, B} \leq M$
$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer

Sketchy Proof of Key Lemma

$s_{1} \leq M$
$s_{2, N}+t_{1, B} \leq M$
$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer
$t_{1, i}$: Elements in r_{1} and read in after i

Sketchy Proof of Key Lemma

$s_{1} \leq M$
$s_{2, N}+t_{1, B} \leq M$
$u_{2} \leq M$
$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer
$t_{1, i}$: Elements in r_{1} and read in after i
u_{2} : Elements not in r_{2} and read in before i

Sketchy Proof of Key Lemma

$s_{1} \leq M$
$s_{2, N}+t_{1, B} \leq M$
$u_{2} \leq M$
$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer
$t_{1, i}$: Elements in r_{1} and read in after i
u_{2} : Elements not in r_{2} and read in before i

$$
r_{1} \leq s_{1}+s_{2, N}+t_{1, B}+t_{1, i}+u_{2}
$$

Sketchy Proof of Key Lemma

$s_{1} \leq M$
$s_{2, N}+t_{1, B} \leq M$
$u_{2} \leq M$
$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer
$t_{1, i}$: Elements in r_{1} and read in after i
u_{2} : Elements not in r_{2} and read in before i

$$
r_{1} \leq s_{1}+s_{2, N}+t_{1, B}+t_{1, i}+u_{2}
$$

Weaker bound of 4 M

$$
\text { If } r_{1} \geq 4 M \text { then } t_{1, i} \geq M
$$

Sketchy Proof of Key Lemma

$$
\begin{aligned}
& s_{1} \leq M \\
& s_{2, N}+t_{1, B} \leq M \\
& u_{2} \leq M
\end{aligned}
$$

$S_{2, N}$: Elements of S_{2} not in initial buffer
$t_{1, B}$: Elements of t_{1} in initial buffer
$t_{1, i}$: Elements in r_{1} and read in after i
u_{2} : Elements not in r_{2} and read in before i

$$
r_{1} \leq s_{1}+s_{2, N}+t_{1, B}+t_{1, i}+u_{2}
$$

Weaker bound of 4 M

But $t_{1, i}$ needs to fit If $r_{1} \geq 4 M$ then $t_{1, i} \geq M$
in r2's buffer

$$
r_{2}<4 M
$$

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r_{1} and r_{2} be two possible runs in opposite directions, then $\left|r_{1}\right|<3 M$ or $\left|r_{2}\right|<3 M$.

Take-away
Don't have to look too far into the future to know greedy's choice

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	M	-	Tight
1.5	M	3 M	Tight
1.75	2 M	M	Randomized
$\mathbf{1}$	$\mathbf{4 M}$	$\mathbf{3 M}$	Tight
$(1+\varepsilon)$	M	$\mathrm{N}-\mathrm{M}$	Offline
1.5	2 M	2 M	3-nearly sorted
1	M	N	5-nearly sorted

Warm Up: Matching OPT with 4M buffer

Algorithm

1. Read elements until entire buffer (4 M) is full
2. Determine what greedy (with M buffer) would do
3. Write a maximal run in greedy's direction

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	M	-	Tight
$\mathbf{1 . 5}$	\mathbf{M}	$\mathbf{3 M}$	Tight
1.75	2 M	M	Randomized
1	4 M	3 M	Tight
$(1+\varepsilon)$	M	$\mathrm{N}-\mathrm{M}$	Offline
1.5	2 M	2 M	3-nearly sorted
1	M	N	5-nearly sorted

Theorem: 1.5-Approximation with 4 M -visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy's direction
3. Write two more - in the same and opposite direction

Theorem: 1.5-Approximation with 4 M -visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy's direction
3. Write two more - in the same and opposite direction

Lemma

At any decision point, if OPT chooses a non-greedy run (say down), it's next run must be in the same direction (down).

Theorem: 1.5-Approximation with 4 M -visibility

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy's direction
3. Write two more - in the same and opposite direction

US

Lower Bound on Resource Augmentation

Almost tight

- With a buffer of size $4 \mathrm{M}-2$
- No deterministic algorithm can do better than 1.5-approx
- Above lower bound implies lower bound for $4 \mathrm{M}-2$ visibility

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	M	-	Tight
1.5	M	3 M	Tight
$\mathbf{1 . 7 5}$	$\mathbf{2 M}$	\mathbf{M}	Randomized
1	4 M	3 M	Tight
$(1+\varepsilon)$	M	$\mathrm{N}-\mathrm{M}$	Offline
1.5	2 M	2 M	3-nearly sorted
1	M	N	5-nearly sorted

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	M	-	Tight
1.5	M	3 M	Tight
1.75	2 M	M	Randomized
1	4 M	3 M	Tight
$\mathbf{(1 + \varepsilon)}$	\mathbf{M}	$\mathbf{N}-\mathbf{M}$	Offline
1.5	2 M	2 M	3 -nearly sorted
1	M	N	5-nearly sorted

Offline Run Generation Problem

- Given the input in advance, compute the policy which produces the minimum possible number of runs
- We have a PTAS
- OPEN problem: Polynomial time offline (exact) policy?

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	M Tight		
1.5	M c-nearly sorted: jight		
1.75	2M	Optimal has runs of	uns of omized
1	4 M length at least cM		
$(1+\varepsilon)$	M		
1.5	2M	2M	3-nearly sorted
1	M	N	5-nearly sorted

The Road Ahead

- Polynomial offline exact algorithm
- Does Randomization help?
- Practical speed ups
- How can we use the new structural insights?
- Parallel instead of sequential writes?
- Very similar to Patience Sort

A Shout Out to the Team!

"And that's all I have to say about that.."

