
Shikha Singh
Joint Work with :

Michael A. Bender, Samuel McCauley, Andrew McGregor,
and Hoa T. Vu

Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Contiguous sequence of sorted elements in an array

• Number of runs:
‣ Smallest number of runs that partition the array

5 9 11 2 4 7 6 13 25 30 3 5 7 11

1 2 3 4

Run Generation Revisited:  
What Goes Up May or May Not Come Down

 Reorder elements arriving from a (large) input stream
using a (small) buffer to produce long runs

Run Generation Revisited:  
What Goes Up May or May Not Come Down

21
5
13
14
6… 4 7 9 3 15 17 8 1 … 9 15 17 21

Input Stream Output Stream

Buffer

• Scan input ingesting elements into buffer
• Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which
elements must be output so as to minimize the number of runs

21
5
13
14
6… 4 7 9 3 15 17 8 1 … 9 15 17 21

Input Stream Output Stream

Buffer

Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Ingest input elements, each of a certain color, into buffer
• Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements
must be output so as to minimize the number of color changes

… …

Input Stream Output Stream

Buffer

Related: Reordering Buffer Management

• Well-known scheduling problem
• Extensively studied (both online and offline case)

‣ [Racke, Sohler and Westermann 2002]
‣ [Asahiro, Kawahara and Miyano 2012]
‣ [Avigdor-Elgrabli and Rabani 2013]
‣ [Bar-Yehuda and Laserson 2007]
‣ [Chan, Megow, Sitters and van Stee 2012]
‣ [Englert and Westermann 2005]
‣ [Im and Moseley 2013, 2015]
‣ [Avigdor-Elgrabli, Im, Moseley and Rabani 2015]

Related: Reordering Buffer Management

1973

1963
1963

1967 1972

Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Studied in the context of External Memory Merge Sort

1961

1991
1996

19981997

• Continued work to improve run length (to speed up merge)

Run Generation Revisited:  
What Goes Up May or May Not Come Down

2010 2011

2003 2006

• Classic Problem: Studied for over 5 decades!

Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Up Runs are monotonically increasing (sorted)

• Down Runs are monotonically decreasing (reverse sorted)

5 9 11 7 4 2 30 25 13 6 8 12 17 21

1 2 3 4

Run Generation Revisited:  
What Goes Up May or May Not Come Down

• Input: Stream of N elements
• Can be stored temporarily in a buffer of size M < N
• Buffer gets full -> write an element to output stream
• Next element is read into the slot freed
• Buffer is always full (except when < M elements remain)

… 9 15 17 21… 4 7 9 3 15 17 8 1

MN

21
5
13
14
6

Run Generation: Problem Definition

• Schedule dictates what to eject based on
‣ Contents of buffer, last element written

• Cannot arbitrarily access input or output
‣ Read next-in-order from input, append to output

Run Generation: Problem Definition

… 9 15 17 21… 4 7 9 3 15 17 8 1

MN

21
5
13
14
6

12 5 16 7 3 12

read M write M

8

19

23

sort

Runs of length M

Naive Run Generation

• Load M elements to the buffer

• Sort these M elements

• Output them in sorted order

7

3

12

8 19 23

write M

sort

12 5 16

read M

Runs of length M

Naive Run Generation

• Load M elements to the buffer

• Sort these M elements

• Output them in sorted order

12

5

16

sort

…

read M

8 19 23 3 7 12

write M

Runs of length M

Naive Run Generation

• Load M elements to the buffer

• Sort these M elements

• Output them in sorted order

…

sort

… 8 19 23 3 7 12 5 12 16

1 2 3

Runs of length M

Naive Run Generation

• Load M elements to the buffer

• Sort these M elements

• Output them in sorted order

…

sort

… 8 19 23 3 7 12 5 12 16

1 2 3

Runs of length M

Naive Run Generation

Base Case of External
Merge Sort

• Load M elements to the buffer

• Sort these M elements

• Output them in sorted order

Classic Schedule: All Up Runs

12 5 16 7 3 15

8

19

23

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 12 5 16 7 3 8

15

19

23

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 12 5 16 7 8 15

3

19

23

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 12 5 16 8 15 19

3

7

23

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 12 5 8 15 19 23

3

7

16

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 12 8 15 19 23 3

5

7

16

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 8 15 19 23 3 5

12

7

16

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 8 15 19 23 3 5 7

12

16

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 8 15 19 23 3 5 7 12

16

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

… 8 15 19 23 3 5 7 12 16

… 1 2

Runs of length > M

Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]:
‣ Starting from a full buffer, output smallest element
‣ Output smallest element in buffer the last output
‣ If no such element, start a new run and continue

Performance of Replacement Selection

“The perpetual plow on its ceaseless cycle.” - Knuth ‘98

• On random data, expected length of a run is 2M

Performance of Replacement Selection

• However, on inversely sorted input

16 19 23 8 12 15 3 5 7

1 2 3

Runs of length M on reverse sorted input

23

19

16

3 5 7 8 12 15

• If the input stream is mostly increasing
‣ Up runs are great

• If the input stream is mostly decreasing
‣ Up runs don’t help

Performance of Replacement Selection

From the point of view of sorting (merging),
the direction of runs (up or down)

doesn’t really matter.

• Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

3 5 7 8 12 15

23

19

16

Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs

… 3 5 7 16 19 23

8

12

15

Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs

… 3 5 16 19 23 15

8

12

7

Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs

… 3 16 19 23 15 12

8

5

7

Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs

… 16 19 23 15 12 8

3

5

7

Alternating-Up-Down Schedule

… 16 19 23 15 12 8 7 5 3

… 1 2

Runs of length > M

• Deterministically alternate between up and down runs

Alternating-Up-Down Schedule

• Is this better than replacement selection?

Alternating-Up-Down Schedule

• [Knuth 63] On random data, it is worse
‣ Average run length is 1.5M, compared to 2M

• Is this better than replacement selection?

Two-Way Replacement Selection

• [Martinez-Palau et al. VLDB 10]
‣ Heuristically choose between an up and down run

‣ Slightly better than Replacement Selection on some data

Input Buffer

Top Heap

Bottom Heap

Up Run

Down Run

Input

To run up or down, that is the question…

Our Main Contributions

• Theoretical foundation of the run generation problem

• Competitive analysis of run generation scheduling policies

“My Momma always said smart things about life and
chocolates… But I need to know the theory behind it..”

 Our Results

• Alternating-Up-Down Replacement Selection is
‣ 2-competitive

‣ Best possible

• Improve competitive ratio with resource augmentation

• Improve performance when input is nearly sorted

“My Momma always said smart things about life and
chocolates… But I need to know the theory behind it..”

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Useful Observations

• Algorithm must always write maximal runs
‣ Never end a run unless forced to

‣ Never skip over elements

WLOG

• Adding elements to an input stream cannot help
‣ If I’ is a subsequence of I, OPT(I’)

• Writing extra elements (compared to OPT) doesn’t hurt

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Alternating-Up-Down is 2-competitive

• At each decision point, suppose OPT goes up/down
‣ A maximal up and down run goes at least as far

‣ Every two runs cover at least one run of OPT

Proof Sketch

t2

OPT

Up-Down

t1

Lower Bounds

• No deterministic algorithm can do better than a 2-approx
‣ Adversary switches the upcoming input wrt decision made

• No randomized algorithm can do better than a 1.5-approx
‣ Yao’s minimax

Resource Augmentation

• No online algorithm can be better than a 2-approximation
‣ Can we do better with extra buffer or lookahead?

7

-4

13

-7

23

5

… 3 12

Extra buffer

…

Regular buffer

… 3 12 5 -7 23

7

-4

13
Lookahead

…

Resource Augmentation: No Duplicates

• Resource augmentation results require uniqueness
‣ Duplicates nullify extra buffer or lookahead

9
11
10

10
10
10
10
10
10
10

(c-1)M

M

… 15 14 13 12 … 13 12 10 10 10 10 10 10 10

(c-1)M

cM-Buffer (c-1)-Lookahead

9
11
10

M

Main Idea Behind Resource Augmentation:
What Would Greedy Do?

• Greedy chooses the longer run at every decision point
‣ Not an online algorithm

• Greedy has some good guarantees
‣ Upper bound and lower bound on run lengths

• Can be as bad as 1.5 times OPT

M, …,1,0

2M, … , M+1, 1, -1, … , -M

OPT
1, 2

, …
 , M

 … , 2
M

0,-1, … ,-M

GREEDY

Note: Greedy is Not Optimal

INPUT

1,2, … ,M
M+1, … ,2M

0

-1, … ,-(M-1) 1

1

-M

No guarantee on
OPT’s run length

• Can be as bad as 1.5 times OPT

M, …,1,0

2M, … , M+1, 1, -1, … , -M

OPT
1, 2

, …
 , M

 … , 2
M

0,-1, … ,-M

GREEDY

Note: Greedy is Not Optimal

INPUT

1,2, … ,M
M+1, … ,2M

0

-1, … ,-(M-1) 1

1

-M

Greedy: How Long is the Not So Long Run?

r1
17
13
11
9
5
2 r2

i
… 1 7 13 4 21 10

Key Lemma

Given an input I, let r1 and r2 be two possible runs in opposite
directions, then |r1|< 3M or |r2| < 3M.

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r1 and r2 be two possible runs
in opposite directions, then |r1|< 3M or |r2| < 3M.

• Don’t have to look too far into the future to know greedy’s choice
Take-away

Sketchy Proof of Key Lemma

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

s1 M

s1 needs to fit in
r2’s buffer

Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

Both need to fit in
r1’s buffer at i

s1 M

Ms2,N + t1,B

Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

t1,i : Elements in r1 and read in after i

t1,i cannot be
included in r2

s1 M

Ms2,N + t1,B

Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

u2 must eventually
be in r1

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i : Elements in r1 and read in after i

Ms2,N + t1,B

Sketchy Proof of Key Lemma

r1
t117

13
11
9
5
2 r2

i
… 1 7 13 4 21 10

t2s1

s2

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i : Elements in r1 and read in after i

Ms2,N + t1,B

r1 s1 + s2,N + t1,B + t1,i + u2

Sketchy Proof of Key Lemma

Weaker bound of 4M

If r1 4M then t1,i M

r1 s1 + s2,N + t1,B + t1,i + u2

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i : Elements in r1 and read in after i

Ms2,N + t1,B

But t1,i needs to fit
in r2’s buffer

r2 < 4M

Sketchy Proof of Key Lemma

Weaker bound of 4M

If r1 4M then t1,i M

r1 s1 + s2,N + t1,B + t1,i + u2

s2,N : Elements of s2 not in initial buffer
t1,B : Elements of t1 in initial buffer

u2 : Elements not in r2 and read in before i

s1 M

u2 M
t1,i : Elements in r1 and read in after i

Ms2,N + t1,B

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r1 and r2 be two possible runs
in opposite directions, then |r1|< 3M or |r2| < 3M.

• Don’t have to look too far into the future to know greedy’s choice
Take-away

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Warm Up: Matching OPT with 4M buffer

1. Read elements until entire buffer (4M) is full
2. Determine what greedy (with M buffer) would do
3. Write a maximal run in greedy’s direction

Algorithm

…
3M

M

…

3M

M

Greedy

…

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Theorem: 1.5-Approximation with 4M-visibility

M

… 11 5 -7 10 15 2 3 17 20 1

9

11

3

-4
3M

…

W.W.G.D?

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction
3. Write two more - in the same and opposite direction

Algorithm

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction
3. Write two more - in the same and opposite direction

Algorithm

Theorem: 1.5-Approximation with 4M-visibility

Lemma

At any decision point, if OPT chooses a non-greedy run (say
down), it’s next run must be in the same direction (down).

Theorem: 1.5-Approximation with 4M-visibility

1. Determine what greedy (with M buffer) would do
2. Write a maximal run in greedy’s direction
3. Write two more - in the same and opposite direction

Algorithm

OPT

US

Lower Bound on Resource Augmentation

• With a buffer of size 4M-2

‣ No deterministic algorithm can do better than 1.5-approx

• Above lower bound implies lower bound for 4M-2 visibility

Almost tight

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

Offline Run Generation Problem

• Given the input in advance, compute the policy which
produces the minimum possible number of runs

• OPEN problem: Polynomial time offline (exact) policy?

• We have a PTAS

Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted

c-nearly sorted:
Optimal has runs of
length at least cM

The Road Ahead

• Polynomial offline exact algorithm

• Does Randomization help?

• Practical speed ups
‣ How can we use the new structural insights?

• Parallel instead of sequential writes?
‣ Very similar to Patience Sort

“And that's all I have to say about that..”

A Shout Out to the Team!

Michael Sam Andrew Hoa

