Run Generation Revisited: What Goes Up May or May Not Come Down

Shikha Singh

Joint Work with :

Michael A. Bender, Samuel McCauley, Andrew McGregor, and Hoa T. Vu

Run Generation Revisited: What Goes Up May or May Not Come Down

• Contiguous sequence of sorted elements in an array

• Number of runs:

Smallest number of runs that partition the array

Reorder elements arriving from a (large) input stream using a (small) buffer to produce *long* runs

Run Generation Revisited: What Goes Up May or May Not Come Down

- Scan input ingesting elements into buffer
- Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which elements must be output so as to minimize the **number of runs**

Related: Reordering Buffer Management

- Ingest input elements, each of a certain *color*, into buffer
- Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements must be output so as to minimize the **number of color changes**

Related: Reordering Buffer Management

- Well-known scheduling problem
- Extensively studied (both online and offline case)
 - [Racke, Sohler and Westermann 2002]
 - [Asahiro, Kawahara and Miyano 2012]
 - [Avigdor-Elgrabli and Rabani 2013]
 - [Bar-Yehuda and Laserson 2007]
 - [Chan, Megow, Sitters and van Stee 2012]
 - [Englert and Westermann 2005]
 - [Im and Moseley 2013, 2015]
 - [Avigdor-Elgrabli, Im, Moseley and Rabani 2015]

Run Generation Revisited:) What Goes Up May or May Not Come Down

• Studied in the context of *External Memory Merge Sort*

Run Generation Revisited:) What Goes Up May or May Not Come Down

FAST GENERATION OF LONG SORTED RUNS FOR SORTING A LARGE FILE

> Yen-Chun Lin and Yu-Ho Cheng Dept. of Electronic Engineering National Taiwan Institute of Technology Taipei, Taiwan, R.O.C.

> > 1991

Speeding up External Mergesort

LuoQuan Zheng and Per-Åke Larson *

1996

Perfectly overlapped generation of long runs on a transputer array for sorting

Yen-Chun Lin*, Horng-Yi Lai

Department of Electronic Engineering, National Talwan Justitute of Technology, P.O. Box 90-100, Taipei 106, Talwan Received 18 March 1996; revised 20 November 1996; accepted 9 December 1996

1997

Memory Management during Run Generation in External Sorting Per-Åke Larson Goetz Graefe Microsoft Microsoft PALarson@microsoft.com

1998

• Continued work to improve run length (to speed up merge)

Run Generation Revisited:) What Goes Up May or May Not Come Down

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 15. NO. 4, JULY/AUGUST 2003

External Sorting: Run Formation Revisited

Per-Åke Larson, Member, IEEE Computer Society

2003

Implementing Sorting in Database Systems

GOETZ GRAEFE

Microsoft

2006

Two-way Replacement Selection

Xavier Martinez-Palau, David Dominguez-Sal, Josep Lluis Larriba-Pey DAMA-UPC, Departament d'Arquitectura de Computadors Universitat Politècnica de Catalunya Campus Nord-UPC, 08034 Barcelona (xmartine,ddomings,larri)@ac.upc.edu

2010

External Sorting on Flash Memory Via Natural Page Run Generation

YANG LIU, ZHEN HE, YI-PING PHOEBE CHEN AND THI NGUYEN

Department of Computer Science and Computer Engineering, La Trobe University, VIC 3086, Australia Email: y34lia@students.latvobe.edu.au, z.he@latvobe.edu.au, nt2nguyer@students.latvobe.edu.au

2011

• Classic Problem: Studied for over 5 decades!

- Up Runs are monotonically increasing (sorted)
- Down Runs are monotonically decreasing (reverse sorted)

Run Generation: Problem Definition

- Input: Stream of *N* elements
- Can be stored temporarily in a buffer of size M < N
- Buffer gets full -> *write* an element to output stream
- Next element is *read* into the slot freed
- Buffer is always full (except when < *M* elements remain)

Run Generation: Problem Definition

- Schedule dictates what to eject based on
 - Contents of buffer, last element written
- Cannot arbitrarily access input or output
 - Read next-in-order from input, append to output

- Load *M* elements to the buffer
- Sort these *M* elements
- Output them in sorted order

- Load *M* elements to the buffer
- Sort these *M* elements
- Output them in sorted order

- Load *M* elements to the buffer
- Sort these *M* elements
- Output them in sorted order

- Load *M* elements to the buffer
- Sort these *M* elements
- Output them in sorted order

- Load *M* elements to the buffer
- Sort these *M* elements
- Output them in sorted order

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in $buffer \ge the last output$
- If no such element, start a new run and continue

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

• **Replacement Selection** [Goetz 63]:

- Starting from a full buffer, output smallest element
- Output smallest element in buffer \geq the last output
- If no such element, start a new run and continue

Performance of Replacement Selection

• On random data, expected length of a run is 2M

"The perpetual plow on its ceaseless cycle." - Knuth '98

Performance of Replacement Selection

• However, on inversely sorted input

Performance of Replacement Selection

- If the input stream is mostly increasing
 - Up runs are great
- If the input stream is mostly decreasing
 - Up runs don't help

From the point of view of sorting (merging), the direction of runs (up or down) doesn't really matter.

Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs

Runs of length > M

Alternating-Up-Down Schedule

• Is this better than replacement selection?

Alternating-Up-Down Schedule

• Is this better than replacement selection?

- [Knuth 63] On random data, it is *worse*
 - Average run length is 1.5M, compared to 2M

Two-Way Replacement Selection

- [Martinez-Palau et al. VLDB 10]
 - Heuristically *choose* between an *up* and *down run*
 - Slightly better than Replacement Selection on *some* data

To run up or down, that is the question...

UP OR DOWNP UP OR DOWNP UP OR DOWNP

Our Main Contributions

- Theoretical foundation of the run generation problem
- Competitive analysis of run generation scheduling policies

"My Momma always said smart things about life and chocolates... But I need to know the theory behind it ..."

Our Results

- Alternating-Up-Down Replacement Selection is
 - 2-competitive
 - Best possible
- Improve competitive ratio with *resource augmentation*
- Improve performance when input is *nearly sorted*

"My Momma always said smart things about life and chocolates... But I need to know the theory behind it .."

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3M	Tight
1.75	2M	Μ	Randomized
1	4M	3M	Tight
$(1+\mathcal{E})$	Μ	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	М	N	5-nearly sorted

Useful Observations

- Adding elements to an input stream cannot help
 - ► If *I*' is a subsequence of *I*, *OPT*(*I*')
- Writing extra elements (compared to OPT) doesn't hurt

WLOG

- Algorithm must always write *maximal runs*
 - Never end a run unless forced to
 - Never skip over elements

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3M	Tight
1.75	2M	M	Randomized
1	4M	3M	Tight
$(1+\mathcal{E})$	Μ	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	М	N	5-nearly sorted

Alternating-Up-Down is 2-competitive

Proof Sketch

- At each decision point, suppose OPT goes up/down
 - A maximal up and down run goes at least as far
 - Every two runs cover at least one run of OPT

Lower Bounds

- No deterministic algorithm can do better than a 2-approx
 - Adversary switches the upcoming input wrt decision made
- No randomized algorithm can do better than a 1.5-approx
 Yao's minimax

Resource Augmentation

- No online algorithm can be better than a 2-approximation
 - Can we do better with extra buffer or lookahead?

Resource Augmentation: No Duplicates

- Resource augmentation results require uniqueness
 - > Duplicates nullify extra buffer or lookahead

Main Idea Behind Resource Augmentation: What Would *Greedy* Do?

- Greedy chooses the longer run at every decision point
 - *Not* an online algorithm
- Greedy has some good guarantees
 - Upper bound and lower bound on run lengths

Note: Greedy is Not Optimal

• Can be as bad as **1.5** times OPT

Note: Greedy is Not Optimal

• Can be as bad as **1.5** times OPT

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I, let r_1 and r_2 be two possible runs in opposite directions, then $|r_1| < 3M$ or $|r_2| < 3M$.

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r_1 and r_2 be two possible runs in opposite directions, then $|r_1| < 3M$ or $|r_2| < 3M$.

Take-away

• Don't have to look too far into the future to know greedy's choice

 $egin{array}{lll} S_1 &\leq M \ S_{2,N} + t_{1,B} &\leq M \end{array}$

 $S_{2,N}$: Elements of S_2 not in initial buffer $t_{1,B}$: Elements of t_1 in initial buffer

Both need to fit in r_{1's} buffer at i

 $S_{2,N}$: Elements of S_2 not in initial buffer $t_{1,B}$: Elements of t_1 in initial buffer $t_{1,i}$: Elements in r_1 and read in after i u_2 : Elements not in r_2 and read in before i

 $S_{2,N}$: Elements of S_2 not in initial buffer $t_{1,B}$: Elements of t_1 in initial buffer

 $t_{1,i}$: Elements in r_1 and read in after i

 u_2 : Elements not in r_2 and read in before i

 $S_{2,N}$: Elements of S_2 not in initial buffer

 $t_{1,B}$: Elements of t_1 in initial buffer

 $t_{1,i}$: Elements in r_1 and read in after i

 u_2 : Elements not in r_2 and read in before i

$$r_1 \leq s_1 + s_{2,N} + t_{1,B} + t_{1,i} + u_2$$

Weaker bound of 4M

If $r_1 \ge 4M$ then $t_{1,i} \ge M$

 $S_{2,N}$: Elements of S_2 not in initial buffer

 $t_{1,B}$: Elements of t_1 in initial buffer

 $t_{1,i}$: Elements in r_1 and read in after i

 u_2 : Elements not in r_2 and read in before i

$$r_1 \leq s_1 + s_{2,N} + t_{1,B} + t_{1,i} + u_2$$

Weaker bound of 4M

Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r_1 and r_2 be two possible runs in opposite directions, then $|r_1| < 3M$ or $|r_2| < 3M$.

• Don't have to look too far into the future to know greedy's choice

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3M	Tight
1.75	2M	Μ	Randomized
1	4M	3 M	Tight
$(1+\varepsilon)$	Μ	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	Μ	N	5-nearly sorted

Warm Up: Matching OPT with 4M buffer

Algorithm

- 1. Read elements until entire buffer (4M) is full
- 2. Determine what greedy (with M buffer) would do
- 3. Write a maximal run in greedy's direction

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3 M	Tight
1.75	2M	M	Randomized
1	4M	3M	Tight
$(1+\mathcal{E})$	М	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	М	N	5-nearly sorted

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

- 1. Determine what greedy (with M buffer) would do
- 2. Write a maximal run in greedy's direction
- 3. Write two more in the same and opposite direction

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

- 1. Determine what greedy (with M buffer) would do
- 2. Write a maximal run in greedy's direction
- 3. Write two more in the same and opposite direction

Lemma

At any decision point, if <mark>OPT</mark> chooses a non-greedy run (say down), it's next run must be in the same direction (down).

Theorem: 1.5-Approximation with 4M-visibility

Algorithm

- 1. Determine what greedy (with M buffer) would do
- 2. Write a maximal run in greedy's direction
- 3. Write two more in the same and opposite direction

Lower Bound on Resource Augmentation

Almost tight

- With a buffer of size 4M-2
 - No deterministic algorithm can do better than 1.5-approx
- Above lower bound implies lower bound for 4M-2 visibility

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3M	Tight
1.75	2M	Μ	Randomized
1	4M	3M	Tight
$(1+\mathcal{E})$	Μ	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	М	N	5-nearly sorted

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	Μ	-	Tight
1.5	Μ	3M	Tight
1.75	2M	M	Randomized
1	4M	3M	Tight
(1+ €)	Μ	N - M	Offline
1.5	2M	2M	3-nearly sorted
1	М	N	5-nearly sorted
Offline Run Generation Problem

- Given the input in advance, compute the policy which produces the minimum possible number of runs
- We have a PTAS
- **OPEN problem**: Polynomial time offline (exact) policy?

Summary of Our Results

Competitive Ratio	Buffer Size	Lookahead	Comments
2	М		Tight
1.5	M	c-nearly sort	ted: ight
1.75	^{2M} Optimal has runs of lomized		
1	4M le	ngth at least	c <i>M</i> light
$(1+\mathcal{E})$	М		ne
1.5	2M	2M	3-nearly sorted
1	Μ	N	5-nearly sorted

The Road Ahead

- Polynomial offline exact algorithm
- Does Randomization help?
- Practical speed ups
 - How can we use the new structural insights?
 - Parallel instead of sequential writes?
 - Very similar to *Patience Sort*

A Shout Out to the Team!

"And that's all I have to say about that .."

