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Run Generation Revisited:  
What Goes Up May or May Not Come Down



• Contiguous sequence of sorted elements in an array 

• Number of runs:  
‣ Smallest number of runs that partition the array
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 Reorder elements arriving from a (large) input stream  
using a (small) buffer to produce long runs 
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• Scan input ingesting elements into buffer 
• Reorder using buffer and write to output stream

Objective: Devise a scheduling strategy for the order in which 
elements must be output so as to minimize the number of runs 
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• Ingest input elements, each of a certain color, into buffer 
• Reorder using buffer and output element

Objective: Devise a scheduling strategy for the order in which elements 
must be output so as to minimize the number of color changes

… …

Input Stream Output Stream

Buffer

Related: Reordering Buffer Management 



• Well-known scheduling problem 
• Extensively studied (both online and offline case) 

‣ [Racke, Sohler and Westermann 2002] 
‣ [Asahiro, Kawahara and Miyano 2012] 
‣ [Avigdor-Elgrabli and Rabani 2013] 
‣ [Bar-Yehuda and Laserson 2007] 
‣ [Chan, Megow, Sitters and van Stee 2012] 
‣ [Englert and Westermann 2005] 
‣ [Im and Moseley 2013, 2015] 
‣ [Avigdor-Elgrabli, Im, Moseley and Rabani 2015]

Related: Reordering Buffer Management 
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• Studied in the context of External Memory Merge Sort
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• Continued work to improve run length (to speed up merge)
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• Classic Problem: Studied for over 5 decades!
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• Up Runs are monotonically increasing (sorted) 

• Down Runs are monotonically decreasing (reverse sorted)
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• Input: Stream of N elements 
• Can be stored temporarily in a buffer of size M < N  
• Buffer gets full -> write an element to output stream 
• Next element is read into the slot freed 
• Buffer is always full (except when < M elements remain)
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Run Generation: Problem Definition



• Schedule dictates what to eject based on 
‣ Contents of buffer, last element written

• Cannot arbitrarily access input or output 
‣ Read next-in-order from input, append to output

Run Generation: Problem Definition
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Naive Run Generation

• Load M elements to the buffer 

• Sort these M elements 

• Output them in sorted order 
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• Load M elements to the buffer 

• Sort these M elements 

• Output them in sorted order 
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• Load M elements to the buffer 

• Sort these M elements 

• Output them in sorted order 
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Naive Run Generation

• Load M elements to the buffer 

• Sort these M elements 

• Output them in sorted order 
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Naive Run Generation

Base Case of External 
Merge Sort

• Load M elements to the buffer 

• Sort these M elements 

• Output them in sorted order 



Classic Schedule: All Up Runs
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• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Output smallest element in buffer       the last output 
‣ If no such element, start a new run and continue
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Classic Schedule: All Up Runs

• Replacement Selection [Goetz 63]: 
‣ Starting from a full buffer, output smallest element 
‣ Output smallest element in buffer       the last output 
‣ If no such element, start a new run and continue



Performance of Replacement Selection

“The perpetual plow on its ceaseless cycle.” - Knuth ‘98

• On random data, expected length of a run is 2M



Performance of Replacement Selection

• However, on inversely sorted input
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• If the input stream is mostly increasing 
‣ Up runs are great

• If the input stream is mostly decreasing 
‣ Up runs don’t help

Performance of Replacement Selection



From the point of view of sorting (merging), 
the direction of runs (up or down)  

doesn’t really matter.



• Deterministically alternate between up and down runs

Alternating-Up-Down Schedule
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Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule

• Deterministically alternate between up and down runs
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Alternating-Up-Down Schedule
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Runs of length > M

• Deterministically alternate between up and down runs



Alternating-Up-Down Schedule

• Is this better than replacement selection?



Alternating-Up-Down Schedule

• [Knuth 63] On random data, it is worse 
‣ Average run length is 1.5M, compared to 2M

• Is this better than replacement selection?



Two-Way Replacement Selection

• [Martinez-Palau et al. VLDB 10] 
‣ Heuristically choose between an up and down run 

‣ Slightly better than Replacement Selection on some data

Input Buffer

Top Heap

Bottom Heap

Up Run

Down Run

Input



To run up or down, that is the question… 



Our Main Contributions 

• Theoretical foundation of the run generation problem 

• Competitive analysis of run generation scheduling policies

“My Momma always said smart things about life and 
chocolates… But I need to know the theory behind it..”



 Our Results

• Alternating-Up-Down Replacement Selection is 
‣ 2-competitive 

‣ Best possible 

• Improve competitive ratio with resource augmentation 

• Improve performance when input is nearly sorted

“My Momma always said smart things about life and 
chocolates… But I need to know the theory behind it..”



Summary of Our Results

Competitive Ratio Buffer Size Lookahead Comments

2 M - Tight
1.5 M 3M Tight

1.75 2M M Randomized

1 4M 3M Tight

(1+  ) M N - M Offline

1.5 2M 2M 3-nearly sorted

1 M N 5-nearly sorted



Useful Observations 

• Algorithm must always write maximal runs 
‣ Never end a run unless forced to 

‣ Never skip over elements 

WLOG

• Adding elements to an input stream cannot help 
‣ If I’ is a subsequence of I, OPT(I’) 

• Writing extra elements (compared to OPT) doesn’t hurt
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Alternating-Up-Down is 2-competitive

• At each decision point, suppose OPT goes up/down 
‣ A maximal up and down run goes at least as far 

‣ Every two runs cover at least one run of OPT

Proof Sketch

t2

OPT 

Up-Down

t1



Lower Bounds 

• No deterministic algorithm can do better than a 2-approx 
‣ Adversary switches the upcoming input wrt decision made 

• No randomized algorithm can do better than a 1.5-approx 
‣ Yao’s minimax



Resource Augmentation

• No online algorithm can be better than a 2-approximation 
‣ Can we do better with extra buffer or lookahead? 
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Resource Augmentation: No Duplicates

• Resource augmentation results require uniqueness  
‣ Duplicates nullify extra buffer or lookahead
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Main Idea Behind Resource Augmentation:  
What Would Greedy Do? 

• Greedy chooses the longer run at every decision point 
‣ Not an online algorithm 

• Greedy has some good guarantees 
‣ Upper bound and lower bound on run lengths



• Can be as bad as 1.5 times OPT
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No guarantee on 
OPT’s run length 

• Can be as bad as 1.5 times OPT
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Greedy: How Long is the Not So Long Run?
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Key Lemma

Given an input I, let r1 and r2 be two possible runs in opposite 
directions, then |r1|< 3M or |r2| < 3M.



Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r1 and r2 be two possible runs 
in opposite directions, then |r1|< 3M or |r2| < 3M.

• Don’t have to look too far into the future to know greedy’s choice
Take-away



Sketchy Proof of Key Lemma
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Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer
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Sketchy Proof of Key Lemma

s2,N : Elements of s2 not in initial buffer
t1,B  : Elements of t1 in initial buffer
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Sketchy Proof of Key Lemma

Weaker bound of 4M

If r1     4M then t1,i     M
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But t1,i needs to fit 
in r2’s buffer

r2 < 4M
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Greedy: How Long is the Not So Long Run?

Key Lemma

Given an input I with no duplicates, let r1 and r2 be two possible runs 
in opposite directions, then |r1|< 3M or |r2| < 3M.

• Don’t have to look too far into the future to know greedy’s choice
Take-away



Summary of Our Results
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Warm Up: Matching OPT with 4M buffer

1. Read elements until entire buffer (4M) is full 
2. Determine what greedy (with M buffer) would do 
3. Write a maximal run in greedy’s direction

Algorithm

…
3M

M

…

3M

M

Greedy

…
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Theorem: 1.5-Approximation with 4M-visibility
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1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm



1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm

Theorem: 1.5-Approximation with 4M-visibility

Lemma

At any decision point, if OPT chooses a non-greedy run (say 
down), it’s next run must be in the same direction (down).



Theorem: 1.5-Approximation with 4M-visibility

1. Determine what greedy (with M buffer) would do 
2. Write a maximal run in greedy’s direction 
3. Write two more - in the same and opposite direction

Algorithm

OPT 

US



Lower Bound on Resource Augmentation

• With a buffer of size 4M-2 

‣ No deterministic algorithm can do better than 1.5-approx 

• Above lower bound implies lower bound for 4M-2 visibility

Almost tight
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Offline Run Generation Problem

• Given the input in advance, compute the policy which 
produces the minimum possible number of runs

• OPEN problem: Polynomial time offline (exact) policy? 

• We have a PTAS
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c-nearly sorted: 
Optimal has runs of 
length at least cM



The Road Ahead

• Polynomial offline exact algorithm 

• Does Randomization help?   

• Practical speed ups 
‣ How can we use the new structural insights? 

• Parallel instead of sequential writes? 
‣ Very similar to Patience Sort



“And that's all I have to say about that..”

A Shout Out to the Team!

Michael Sam Andrew Hoa


