Mechanism Design for Scheduling with Uncertain Execution Time.

Angelina Vidali Teesside University

Joint work with Vincent Conitzer (Duke University)

and ongoing work with Carmine Ventre

The Queen wants a painting for her palace. Every day she decides which painters will draw. Goal: minimize E[painting time]

Creativity is unpredictable!

Painters don't know how much time it's going to take them and need incentives to draw! Time painter *i* needs to finish the job ~ distribution f_i painter i knows f_i but not t_i and f_{-i}

Crowdsourcing

Acomplish a complicated very big job using many agents!

• Give incentives to the agents to complete the tasks!

Crowdsourcing Application

We want to solve a problem (e.g. a SAT instance), by running a crowdsourcing contest.

Payment 0 if you fail: Only the winner (agent who solves the problem first) will get paid.

Uncertainty: The agents don't know how much time they will need.

For SAT there are some good euristics so the probability of finding a solution in the beginning is rather high, but if these don't work then it might take forever... (MHR assumption makes sense)

Hazard Rate:

Probability a painter finishes the painting at time t given that he hasn't finished it until time t-1

$$\phi_i(t) = \frac{P(T_i = t)}{(1 - P[T_i < t])}$$

Monotone (non-increasing) hazard rate assumption: the more time a painter takes the less likely is he to finish at the next time step

The greedy algorithm is optimal!

-"Off with their heads!"

Objective: Minimize the E[sum of processing times]

Greedy=OPT:

assign at each time step the job to the machine with maximum hazard rate i.e. the machine more likely to finish!

To prove this we need: Monotone hazard rates assumption "Sort the hazard rates!"

Objective: Minimize the E[sum of processing times]

OPT: assign at each time step the job to the machine with maximum hazard rate

 $\phi(1) \phi(2) \phi(3) \phi(4) \phi(5) \dots$

0.9 0.8 0.5 0.1 0.1

Input

0.6 0.2 0.1 0.1 0.1

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3

We focus on direct revelation mechanisms

Input: true types of the players here: the distributions **f**_i

Output: allocation(which machine processes at each time step) and payments

We have a revelation principle

gets payed the 2nd lowest bid

The fastest machine (lowest bid) t_i wins and

The Vickrey mechanism min sum of processing times truthful

In our setting the Expected Vickrey mechanism is not truthful.

Groves Realized

After completing the task we have the realized running times of the players

-"sum of the realized times of the other players"

Solution Concept: Ex-post equilibrium

If the other players are telling the truth, then the best thing for me to do is to tell the truth, for **any** private information the players might.

Dominant \subseteq Ex-post \subseteq Bayes Nash

Valuations are interdependent

The valuation of a player depends on whether another player has already finished before him. If we want our mecahnism to have an h_i(types of the other players) part (useful for getting properties like IR,etc) p_i=Groves + h_i(types of the other players)

We have to consider the situation when the player who finishes isn't there.

"How much does the player who finish contribute to the social wellfare?"

FINISH

TIME

OPT

 \bigcirc

OPT What if the player who finishes wasn't there?

REALIZED

IN EXPECTATION

h part of the mechanism

Vickrey Variations

 T_{N} := how long it takes a group N to finish the task (random variable) r_{N} := realized value of T_{N} h_{i} (types of the other players) part

Properties of different Mechanisms

	efficient	truthful in dominant strategies	ex-post truthful	IR	no incentive to miscompute	payment 0 if fail
Clarke in Expectation (CE)	~	×	×	~	×	×
Pure Realized Groves (PRG)	~	×	~	×	✓	×
Clarke h (ChE) in Expectation	~	×	•	~	~	×
Clarke h partially in Expectation (ChpE)	~	×	~	•	✓	~

Main Theorem:

There exists an (ex-post) truthful mechanism that:

(a) doesn't pay players who did not complete the task

(b) satisfies IR in expectation

(c) has positive payments

(d) it is to the best interest of the players to exert full effort.

(Also generalizes to many tasks.)

No incentive to miscompute

Maybe the painters reported their true distributions but in the end decided it is to their best interest to take a break instead of painting!

If no realized values are used then players can just sit and compute nothing!

No incentive to lie or miscompute in ChpE (Clarke h partially in Expectation) Proof is more involved. Idea:

still not affect the Expectation of h by miscomputing!

"Would you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to."

"I don't much care where –"

"Then it doesn't matter which way you go." Lewis Carol, Alice in Wonderland