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Introduction

1 Many companies have containers to be shipper out.

2 A cargo ship can delivery C containers per journey.

3 As long as one container can not be shipped out today, the company has
to wait another day.

How to delivery the containers from different companies to minimize the
total completion time?
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Formulation

Given a set J of n jobs, for each job j,

Fully Parallel, processed on any machine at any moment.
sj , the workload, sj ∈ N.
wj , the weight (importance), wj ∈ R.
released at time zero.

Given m identical machines, for each machine i,

finish one job of one unit workload during one unit time.

A feasible schedule is a table M ,

M(i, t): the job executed on machine i during time unit [t− 1, t),
Job completion time Cj = max

M(i,t)=j
t.

Objective: minimize T =
∑

j∈J wjCj.
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Formulation

Observation: Jobs should be scheduled consecutively.

T =
∑

j∈J wj⌈
∑

i�j si
m ⌉.

T1T2T3T4T5T6

Job1
Job2
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Contribution

Related works: first introduced by Zhang et al. [TCS 2013]

Strongly NP-hard when m is input.
Proposed a 2-approximation algorithm, Largest-Ratio-First (LRF)
algorithm.

LRF algorithm: schedule the job with largest ratio w/s first.

Our contribution: the LRF algorithm is α - approximation,

α = 1 + i+(i−2n/m)
i(i+1) for instance of jobs with equal density wj/sj = 1,

where i = ⌈ 2n
m ⌉.

i) 1 + 1
i+1

≤ α < 1 + 1
i
;

ii) α is tight for some group of instance;
iii) we give tight upper bound of α for different group of instances.

α = 1 + m−1
m+2 , for general case.
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Instance of Jobs With Equal Density (overview)

Equal density: wj = sj, ∀j ∈ J .
LRF algorithm = arbitrary order of jobs.

α(J) =
maxS∈permutation(J) T (S,J)

minS∈permutation(J) T (S,J)

Goal: for fixed value of n and m, find maximum α & corresponding
instance J∗.

αmax = α(J(m,n)).

We prove J∗ ∈ J
(m,n)
org
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Splitting of Jobs

Definition

Free job: be executed within one unit time;
Unlucky job: one unit workload less, finished earlier.
Splitting: replace one job by two jobs, keep both w/s and total workload.
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T ′ − T = 0, for free jobs.

T ′ − T < 0, for unlucky jobs.

T ′ − T ≤ 0, generally.

green: 2× 4 vs 1× 4 + 1× 4.

yellow: 3× 4 vs 2× 3 + 1× 4.
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T ′ − T ≤ 0, generally.

green: 2× 4 vs 1× 4 + 1× 4.

yellow: 3× 4 vs 2× 3 + 1× 4.

Lemma

For any feasible schedule S, T (S, J) ≥ T (Junit).
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Properties of Organized Instance

Definition

An organized instance J(y, z, k) = my + k1 + 1z s.t. L(J) > m(y + 1),
where n = y + z + 1, 1 < k ≤ m, 0 < z < n (y, z, k ∈ N).

Kai WANG Worst Case Bound of LRF Schedule for Fully Parallel Jobs 9 / 21



Properties of Organized Instance

Definition

An organized instance J(y, z, k) = my + k1 + 1z s.t. L(J) > m(y + 1),
where n = y + z + 1, 1 < k ≤ m, 0 < z < n (y, z, k ∈ N).

Lemma
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(m,n)
org ,

schedule S1 = (my, k, 1z) is optimal and T (OPT , J) = T (Junit).

schedule S2 = (1,my, 1m−k, k, 1z+k−1−m) is an LRF schedule and

T (LRF, J) = T (Junit) + y(m− 1) + (k − 1).
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Instance Achieving Maximum Approximation Ratio

Next, we prove that

α(J(m,n)
org ) = α(J(m,n)

one ) = α(J(m,n))

J(m,n) = {J | ∀j ∈ J wj = sj , |J | = n}

J
(m,n)
one = {J | ∀j ∈ J 1 ≤ sj ≤ m, J ∈ J(m,n)}

J
(m,n)
org contains all the organized instances of n jobs
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Instance Achieving Maximum Approximation Ratio
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Approximation Ratio Bound (Organized Instance)

Previously, ∀J = J(y, z, k) ∈ J
(m,n)
org s.t. n = y + z + 1,

α(J) = 1 + y(m−1)+(k−1)
T (Junit)

.

L(J) = y ·m+ 1 · k + z · 1 is the total workload of J .

Define a = ⌊L(J)m ⌋, b = L(J)− am.

T (Junit) = m(1 + 2 + ...+ a) + b(a+ 1).

α(J) = T (LRF ,J)
T (OPT,J) = 1 + am+b−n

ma(a+1)/2+b(a+1)
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Approximation Ratio Bound (Organized Instance)

Define function g(a, b) = am+b−n
ma(a+1)/2+b(a+1) (a > 0, b ≥ 0).

Define i = ⌈2nm ⌉,

g(a, b) ≤ g(i, 0), ∀a > 0, 0 ≤ b < m, a, b ∈ N

Eventually,

α(J) ≤ 1 + g(i, 0) = 1 +
2(im − n)

i(i+ 1)m
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Approximation Ratio Bound (Organized Instance)

Lemma

For any organized instance J ∈ J
(m,n)
org , L(J) = im if and only if

i ≤ n+ 1−m, where i = ⌈2nm ⌉.

how about i > n+ 1−m, L(J) = im− 1, im+ 1, ..?

Group the instance, in each group (region) of instance we find the tight
bound.

Roughly, for region Bi, Bi = {(m,n) | i = ⌈2nm ⌉,m ≥ 3}
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Approximation Ratio Bound (Organized Instance)

Regions Approximation Ratio function g(a, b)

B0 = {m = 2} 1 + n−1
n2 (tight) g(n− 1, m− 1)

B1 = {m ≥ 2n,m ≥ 3} 1 + m−n+1
m+2

(tight) g(i, 1)

B∗
2 = {m = 2n− 1, m ≥ 3} 1 + m−1

2m−1
(tight) g(i− 1, n− 1)

B2 = {n ≤ m ≤ 2n− 2,m ≥ 3} 1 + 2m−n+1
3m+3

(tight) g(i, 1)

B∗
3 = {m = n− 1,m ≥ 3, n 6= 4} 1 + 2m−2

6m−3
(tight) g(i− 1, m− 1)

B3 = { 2n
3

≤ m ≤ n− 2,m ≥ 3}
1 + 2(im−n)

i(i+1)m
(tight) g(i, 0)B4 = {3 < 2n

m
≤ 4, m ≥ 3, n 6= 5}

Bi = {i− 1 < 2n
m

≤ i,m ≥ 3}, ∀i ≥ 5

B∗ = {m = 3, 4 ≤ n ≤ 5} 1 + 2(im−n)
i(i+1)m

Table: Approximation ratio bound of instances in different regions.
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Approximation Ratio Bound (Organized Instance)

Figure: Example of the region division for 2 ≤ n,m ≤ 20
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Instance of Jobs with Arbitrary Weights

Definition

∀J , let J (e) = {(w′

j , sj) |w
′

j = sj, j ∈ J} be the corresponding job set of J .
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′

j = sj, j ∈ J} be the corresponding job set of J .

Lemma

∀J , there always exists a subset Js ⊆ J such that α(J
(e)
s ) ≥ α(J).

Theorem

∀J, α(J) ≤ α(J(m,2)) = 1 + m−1
m+2 .
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Conclusion

We prove that LRF algorithm is α - approximation (α < 2).

For instance of jobs with equal density wj/sj = 1,

α = 1 + i+(i−2n/m)
i(i+1) , where i = ⌈ 2n

m ⌉

we give tight upper bound for different group of instances.

For general case, α = 1 + m−1
m+2 .
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Future Work

what is the complexity of the problem when m is fixed?

Considering release time?

Considering machine reservation time period?

unrelated machines, i.e. different machine takes different processing
time.
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Question

Question?
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