

Flow shop scheduling with Delivery coordination

Presented by Xin Han, Yinling Wang, Yan Lan, He Guo

Contents

The model
 Our main results
 Conclusion

The Model

$$F2 \rightarrow D | v = 1, c | C_{\max}$$

F2	Flowshop scheduling with two machines
D	Destination
v = 1	One transporter
$c \geq 1$	Capacity ≥ 1
C_{max}	the object of minimize the makespan

An Example

Main Results

1	Prove F2 \rightarrow D v = 1, c = 2 C _{max} is strongly NP-hard
2	Study three special cases of the model and give related polynomial optimal algorithms
3	Give PTAS for F2 \rightarrow D v = 1, c C _{max}

Previous results

Author	Year	Problem	Complexity
Lee & Chen[1]	2001	$F2 \rightarrow D v = 1, c = 1 C_{\max}$	SNP
		$F2 \rightarrow D v = 1, c \ge 4 C_{\max}$	SNP
Yuan et.al.[2]	2007	$F2 \rightarrow D v = 1, c = 2 C_{\max}$	Binary NP-hard
		$F2 \rightarrow D v = 1, c = 3 C_{\text{max}}$	SNP

[1] Chung-Yee L, Chen Z. Machine scheduling with transportation considerations[J]. Journal of Scheduling, 2001, 4(1):3-24.

[2] Yuan J, Soukhal A, Chen Y, et al. A note on the complexity of flow shop scheduling with transportation constraints[J]. European Journal of Operational Research, 2007, 178(3):918-925.

Our first results

$F2 \rightarrow D|v = 1, c = 2|C_{max}$ Just binary NP-hard ? NP-hard in strong sense?

Main Idea

4-Partition problem

Inpute: 4*m* positive integers $a_1, a_2, ..., a_{4m}$ with $\sum_{i=1}^{4m} a_i = mb$ and $b/5 < a_i < b/3$, for i = 1, ..., 4m.

Output: Find the partition $H_1, H_2, ..., H_m$ such that $|H_j| = 4$ and $\sum_{i \in H_j} a_i = b$ for j = 1, 2, ..., m.

The above 4-PARTITION problem is (Strong NP-hard problem [3].

[3] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness[C]// W.H. Freeman and Company. 1979.

Instance 4-partition to $F2 \rightarrow D$

First, use the 4-partition instance to construct a jobs instance of $F2 \rightarrow D$.

Big	Job 0:	A(0) = 0,
Small	Jobs <i>i</i> :	$A(i) = 0.1b + 0.8a_i$,
Big	Jobs <i>j</i> :	A(j) = 1.6b,
Tiny	Jobs k:	A(k)=0.2b,

$$B(0) = 2.1b$$

$$B(i) = 0.9a_i, \text{ for } i = 1, ..., 4m$$

$$B(j) = 2.1b, \text{ for } j = 4m + 1, ..., 5m$$

$$B(k) = 0, \text{ for } k = 5m + 1, ..., 6m + 1$$

The delivery time is *b*

4-partition to $F2 \rightarrow D$

Lemma 1: Assume $H_1, H_2, ..., H_m$ is a solution for 4-Partition, then there is a feasible schedule S with makespan no bigger than 3mb + 3.1b

Fig. 1. A feasible schedule S with $C_{\max}(S) = (3m + 3.1)b$

4-partirion to $F2 \rightarrow D$

Lemma 2. If $C_{\max}(S) \le y = 3mb + 3.1b$, then there is no idle time on machine B and the first job that processed on A and B is big job 0.

Fig. 1. A feasible schedule S with $C_{\max}(S) = (3m + 3.1)b$

4-partition to $F2 \rightarrow D$

Lemma 3. The transporter V is idle during time span [0, 2.1b] and other time is always busy. And it carries two jobs each time. The second job processed on B is a tiny job.

Fig. 1. A feasible schedule S with $C_{\max}(S) = (3m + 3.1)b$

Lemma 4. We call big job 0 and a tiny job on B the first batch. If $C_{max}(S) \leq y$, then machine B must complete four jobs between the first batch and the second big job.

Fig. 2. A schedule when $x + y \ge 5$

Lemma 4. We call big job 0 and a tiny job on B the first batch. If $C_{max}(S) \leq y$, then machine B must complete four jobs between the first batch and the second big job.

Fig. 2. A schedule when $x + y \ge 5$

Lemma 4. We call big job 0 and a tiny job on B the first batch. If $C_{max}(S) \leq y$, then machine B must complete four jobs between the first batch and the second big job.

Fig. 3. A schedule when x + y = 2

Lemma 5. The four jobs between the first batch and big job b_1 on B are all small jobs. Let H be the set of elements in 4-PARTITION which correspond with the four small jobs. Then the total size in H is exactly b.

Lemma 6. If $C_S \leq 3mb + 3.1b$, then the instance of 4-PARTITION has a feasible solution.

Our first results

By lemma 1 and lemma 6, we can find that $4 - partition problem \leftrightarrow F2 \rightarrow D|v = 1, c = 2|C_{max}$ Then we can get the following theorem:

Theorem 1. $F2 \rightarrow D|v = 1, c = 2|C_{\max}$ is a NP-hard problem in strong sense.

Our Second results

Consider three special cases of $F2 \rightarrow D | v = 1, c \ge 1 | C_{max}$ and give polynomial optimal Algorithms.

Three special cases

Problem	Time- Complexity
$F2 \rightarrow D v = 1, c \ge 1, chain C_{max}$	0(1)
$F2 \rightarrow D v = 1, c \ge 1, B(i) = p C_{\max}$	0(nlogn)
$F_2 \rightarrow D \mid v = 1, c \ge 1, \max_{1 \le i \le n} \left\{ A(i) \right\} \le \min_{1 \le i \le n} \left\{ B(i) \right\} \mid C_{\max}$	$O(n^2)$

The Relations

$F2 \rightarrow D | v = 1, c \geq 1, chain | C_{max}$

The jobs' processing order on machines A,B has been given before the scheduling.

Conclusion

- (1) prove $F2 \rightarrow D | v = 1, c = 2 | C_{max}$ is strongly NP-hard
- (2) study three special cases of the model and give related polynomial optimal algorithms
 (3) Give PTAS for F2 → D|v = 1, c|C_{max}

Xin Han :hanxin@dlut.edu.cnYinling Wang:yinling_wang@foxmail.com